Xindan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/697538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformation and dynamic interactions of the multipartite genome in <i>Agrobacterium tumefaciens</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
2	The WalR-WalK Signaling Pathway Modulates the Activities of both CwlO and LytE through Control of the Peptidoglycan Deacetylase PdaC in Bacillus subtilis. Journal of Bacteriology, 2022, 204, JB0053321.	2.2	11
3	HBsu Is Required for the Initiation of DNA Replication in Bacillus subtilis. Journal of Bacteriology, 2022, 204, e0011922.	2.2	10
4	Centromere Interactions Promote the Maintenance of the Multipartite Genome in Agrobacterium tumefaciens. MBio, 2022, 13, e0050822.	4.1	9
5	ldentification of Genes Required for Swarming Motility in <i>Bacillus subtilis</i> Using Transposon Mutagenesis and High-Throughput Sequencing (TnSeq). Journal of Bacteriology, 2022, 204, .	2.2	5
6	A dicentric bacterial chromosome requires XerC/D site-specific recombinases for resolution. Current Biology, 2022, 32, 3609-3618.e7.	3.9	6
7	Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli. Scientific Reports, 2021, 11, 64.	3.3	3
8	XerD unloads bacterial SMC complexes at the replication terminus. Molecular Cell, 2021, 81, 756-766.e8.	9.7	27
9	DNA-loop-extruding SMC complexes can traverse one another in vivo. Nature Structural and Molecular Biology, 2021, 28, 642-651.	8.2	49
10	SweC and SweD are essential co-factors of the FtsEX-CwlO cell wall hydrolase complex in Bacillus subtilis. PLoS Genetics, 2019, 15, e1008296.	3.5	37
11	RNA polymerases as moving barriers to condensin loop extrusion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20489-20499.	7.1	105
12	InÂVivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex. Molecular Cell, 2018, 71, 841-847.e5.	9.7	66
13	<i>Bacillus subtilis</i> SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science, 2017, 355, 524-527.	12.6	267
14	The <i>Bacillus subtilis</i> germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Molecular Microbiology, 2017, 105, 689-704.	2.5	23
15	Elucidating the Role of Transcription in Shaping the 3D Structure of the Bacterial Genome. Biophysical Journal, 2017, 112, 69a.	0.5	0
16	The nucleoid occlusion factor Noc controls DNA replication initiation in Staphylococcus aureus. PLoS Genetics, 2017, 13, e1006908.	3.5	43
17	GerM is required to assemble the basal platform of the SpoIIIA–SpoIIQ transenvelope complex during sporulation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2016, 102, 260-273.	2.5	27
18	Visualizing Bacillus subtilis During Vegetative Growth and Spore Formation. Methods in Molecular Biology, 2016, 1431, 275-287.	0.9	8

XINDAN WANG

#	Article	IF	CITATIONS
19	Condensin promotes the juxtaposition of DNA flanking its loading site in <i>Bacillus subtilis</i> . Genes and Development, 2015, 29, 1661-1675.	5.9	215
20	Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8809-8814.	7.1	96
21	Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in <i>Escherichia coli</i> cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2734-2739.	7.1	14
22	Spatial organization of bacterial chromosomes. Current Opinion in Microbiology, 2014, 22, 66-72.	5.1	51
23	<i>Bacillus subtilis</i> chromosome organization oscillates between two distinct patterns. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12877-12882.	7.1	116
24	ParB spreading requires DNA bridging. Genes and Development, 2014, 28, 1228-1238.	5.9	177
25	The SMC Condensin Complex Is Required for Origin Segregation in Bacillus subtilis. Current Biology, 2014, 24, 287-292.	3.9	109
26	Single-Molecule Studies of a ParB Family Chromosome Segregation Protein from Bacillussubtilis. Biophysical Journal, 2013, 104, 582a-583a.	0.5	0
27	Organization and segregation of bacterial chromosomes. Nature Reviews Genetics, 2013, 14, 191-203.	16.3	252
28	Spatio-Temporal Organization of Replication in Bacteria and Eukaryotes (Nucleoids and Nuclei). Cold Spring Harbor Perspectives in Biology, 2012, 4, a010389-a010389.	5.5	24
29	Bypass of a protein barrier by a replicative DNA helicase. Nature, 2012, 492, 205-209.	27.8	85
30	Replication and segregation of an <i>Escherichia coli</i> chromosome with two replication origins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E243-50.	7.1	84
31	Replicationâ€directed sister chromosome alignment in <i>Escherichia coli</i> . Molecular Microbiology, 2010, 75, 1090-1097.	2.5	23
32	Independent Segregation of the Two Arms of the <i>Escherichia coli ori</i> Region Requires neither RNA Synthesis nor MreB Dynamics. Journal of Bacteriology, 2010, 192, 6143-6153.	2.2	35
33	Visualizing genetic loci and molecular machines in living bacteria. Biochemical Society Transactions, 2008, 36, 749-753.	3.4	20
34	Escherichia coli and its chromosome. Trends in Microbiology, 2008, 16, 238-245.	7.7	79
35	Modulation of <i>Escherichia coli</i> sister chromosome cohesion by topoisomerase IV. Genes and Development, 2008, 22, 2426-2433.	5.9	110
36	The two Escherichia coli chromosome arms locate to separate cell halves. Genes and Development, 2006, 20, 1727-1731.	5.9	198

#	Article	IF	CITATIONS
37	Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli. Genes and Development, 2005, 19, 2367-2377.	5.9	151