Xindan Wang

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/697538/publications.pdf
Version: 2024-02-01

Conformation and dynamic interactions of the multipartite genome in <i> Agrobacterium
tumefaciens<|i>. Proceedings of the National Academy of Sciences of the United States of
1 tumefaciens</i>. Proceedings of the National Academy of Sciences of the United States of America,
7.1

17
2022, 119, .
The WalR-WalK Signaling Pathway Modulates the Activities of both CwIO and LytE through Control
2 of the Peptidoglycan Deacetylase PdaC in Bacillus subtilis. Journal of Bacteriology, 2022, 204, JB0053321.

HBsu Is Required for the Initiation of DNA Replication in Bacillus subtilis. Journal of Bacteriology, 2022, 204, e0011922.

Centromere Interactions Promote the Maintenance of the Multipartite Genome in Agrobacterium tumefaciens. MBio, 2022, 13, e0050822.

Identification of Genes Required for Swarming Motility in <i>Bacillus subtilis</i> Using Transposon
Mutagenesis and High-Throughput Sequencing (TnSeq). Journal of Bacteriology, 2022, 204, .

A dicentric bacterial chromosome requires XerC/D site-specific recombinases for resolution. Current
Biology, 2022, 32, 3609-3618.e7.

Respiratory chain components are required for peptidoglycan recognition protein-induced thiol
depletion and killing in Bacillus subtilis and Escherichia coli. Scientific Reports, 2021, 11, 64.

8 XerD unloads bacterial SMC complexes at the replication terminus. Molecular Cell, 2021, 81, 756-766.e8.
9.7

27

9 DNA-loop-extruding SMC complexes can traverse one another in vivo. Nature Structural and Molecular Biology, 2021, 28, 642-651.

SweC and SweD are essential co-factors of the FtsEX-CwIO cell wall hydrolase complex in Bacillus
$10 \quad$ SweC and SweD are essential co-factors of the
3.5

37

RNA polymerases as moving barriers to condensin loop extrusion. Proceedings of the National
Academy of Sciences of the United States of America, 2019, 116, 20489-20499.
InÂVivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin
12 Complex. Molecular Cell, 2018, 71, 841-847.e5.
9.7

66
<i>Bacillus subtilis<|i〉 SMC complexes juxtapose chromosome arms as they travel from origin to
$13 \quad \begin{aligned} & \text { <i>Bacillus subtilis SMC complexes ju } \\ & \text { terminus. Science, 2017, 355, 524-527. }\end{aligned}$
12.6

267

The <i>Bacillus subtilis</i> germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Molecular Microbiology, 2017, 105, 689-704.
2.5

23
14
Elucidating the Role of Transcription in Shaping the 3D Structure of the Bacterial Genome.
0.5

0
15 Biophysical Journal, 2017, 112, 69a.

The nucleoid occlusion factor Noc controls DNA replication initiation in Staphylococcus aureus.
PLoS Genetics, 2017, 13, e1006908.
3.5

43

GerM is required to assemble the basal platform of the SpollIAâ $€^{\prime S}$ SpollQ transenvelope complex during
sporulation in <i>Bacillus subtilis<|i〉. Molecular Microbiology, 2016, 102, 260-273.
2.5 27
Condensin promotes the juxtaposition of DNA flanking its loading site in＜i＞Bacillus subtilis＜／i＞．
Genes and Development，2015，29，1661－1675．
America, 2014, 111, 2734-2739.

22 Spatial organization of bacterial chromosomes．Current Opinion in Microbiology，2014，22，66－72．
$27 \quad$ Organization and segregation of bacterial chromosomes．Nature Reviews Genetics，2013，14，191－203．

$28 \quad$| Spatio－Temporal Organization of Replication in Bacteria and Eukaryotes（Nucleoids and Nuclei）．Cold |
| :--- |
| Spring Harbor Perspectives in Biology，2012，4，a010389－a010389． |

29	Bypass of a protein barrier by a replicative DNA helicase．Nature，2012，492，205－209．	27.8	85
30	Replication and segregation of an＜i＞Escherichia coli＜／i＞chromosome with two replication origins． Proceedings of the National Academy of Sciences of the United States of America，2011，108，E243－50．	7.1	84
31	Replicationâ€directed sister chromosome alignment in＜i＞Escherichia coli＜／i〉．Molecular Microbiology， 2010，75，1090－1097．	2.5	23
32	Independent Segregation of the Two Arms of the＜i＞Escherichia coli ori＜／i＞Region Requires neither RNA Synthesis nor MreB Dynamics．Journal of Bacteriology，2010，192，6143－6153．	2.2	35
33	Visualizing genetic loci and molecular machines in living bacteria．Biochemical Society Transactions， 2008，36，749－753．	3.4	20
34	Escherichia coli and its chromosome．Trends in Microbiology，2008，16，238－245．	7.7	79
35	Modulation of＜i＞Escherichia coli＜／i＞sister chromosome cohesion by topoisomerase IV．Genes and Development，2008，22，2426－2433．	5.9	110
36	The two Escherichia coli chromosome arms locate to separate cell halves．Genes and Development， 2006，20，1727－1731．	5.9	198

Independent Segregation of the Two Arms of the＜i＞Escherichia coli ori＜／i＞Region Requires neither RNA Synthesis nor MreB Dynamics．Journal of Bacteriology，2010，192，6143－6153．
2.2

35
Spatio－Temporal Organization of Replication in Bacteria and Eukaryotes（Nucleoids and Nuclei）．Cold
Spring Harbor Perspectives in Biology，2012，4，a010389－a010389． 5.5
24

