List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen electroreduction on small (<10 nm) and {100}-oriented Pt nanoparticles. Electrochimica Acta, 2022, 403, 139631.	5.2	5
2	Electrochemical Reduction of CO ₂ to Formate on Nanoparticulated Biâ~'Snâ~'Sb Electrodes. ChemElectroChem, 2022, 9, .	3.4	17
3	CO2 reduction to formate on an affordable bismuth metal-organic framework based catalyst. Journal of CO2 Utilization, 2022, 59, 101937.	6.8	12
4	Small (<5 nm), Clean, and Wellâ€Structured Cubic Platinum Nanoparticles: Synthesis and Electrochemical Characterization. ChemElectroChem, 2021, 8, 49-52.	3.4	9
5	Improving trade-offs in the figures of merit of gas-phase single-pass continuous CO2 electrocatalytic reduction to formate. Chemical Engineering Journal, 2021, 405, 126965.	12.7	57
6	Electrochemical reduction of CO2 using shape-controlled nanoparticles. , 2021, , 155-181.		0
7	Effect of Pd on the Electrocatalytic Activity of Pt towards Oxidation of Ethanol in Alkaline Solutions. Applied Sciences (Switzerland), 2021, 11, 1315.	2.5	14
8	Bragg Coherent Diffraction Imaging for <i>In Situ</i> Studies in Electrocatalysis. ACS Nano, 2021, 15, 6129-6146.	14.6	24
9	On the activity and stability of Sb2O3/Sb nanoparticles for the electroreduction of CO2 toward formate. Journal of Electroanalytical Chemistry, 2021, 895, 115440.	3.8	11
10	Formic acid electrooxidation on small, {1 0 0} structured, and Pd decorated carbon-supported Pt nanoparticles. Journal of Catalysis, 2021, 400, 140-147.	6.2	4
11	New insights into the performance of an acid-base electrochemical flow battery. Journal of Power Sources, 2021, 506, 230233.	7.8	7
12	Oxygen reduction reaction on Pd nanoparticles supported on novel mesoporous carbon materials. Electrochimica Acta, 2021, 394, 139132.	5.2	14
13	Catalyst coated membrane electrodes for the gas phase CO2 electroreduction to formate. Catalysis Today, 2020, 346, 58-64.	4.4	35
14	Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: A review. International Journal of Hydrogen Energy, 2020, 45, 31775-31797.	7.1	127
15	Highly active Ag/C nanoparticles containing ultra-low quantities of sub-surface Pt for the electrooxidation of glycerol in alkaline media. Applied Catalysis B: Environmental, 2020, 279, 119369.	20.2	33
16	Mechanistic Framework for the Formation of Different Sulfur Species by Electron Irradiation of <i>n</i> -Dodecanethiol Self-Assembled Monolayers on Au(111) and Au(100). Journal of Physical Chemistry C, 2020, 124, 22591-22600.	3.1	5
17	Three-Dimensional Coherent Bragg Imaging of Rotating Nanoparticles. Physical Review Letters, 2020, 125, 246101.	7.8	12
18	State of the art in the electrochemical characterization of the surface structure of shape-controlled Pt, Au, and Pd nanoparticles. Current Opinion in Electrochemistry, 2020, 22, 65-71.	4.8	21

#	Article	IF	CITATIONS
19	Gas–liquid–solid reaction system for <scp>CO₂</scp> electroreduction to formate without using supporting electrolyte. AICHE Journal, 2020, 66, e16299.	3.6	24
20	Bi–Sn nanoparticles for electrochemical denitrification: activity and selectivity towards N2 formation. Electrochimica Acta, 2020, 340, 135914.	5.2	26
21	Shape-controlled metal nanoparticles for electrocatalytic applications. Physical Sciences Reviews, 2019, 4, .	0.8	17
22	Surface Structure Characterization of Shape and Size Controlled Pd Nanoparticles by Cu UPD: A Quantitative Approach. Frontiers in Chemistry, 2019, 7, 527.	3.6	20
23	Rational Design of Electrocatalytic Interfaces: Cd UPD Mediated Nitrate Reduction on Pd: Au Bimetallic Surfaces. Journal of the Electrochemical Society, 2019, 166, H640-H643.	2.9	4
24	Electrochemical Reduction of CO2 to Formate on Easily Prepared Carbon-Supported Bi Nanoparticles. Molecules, 2019, 24, 2032.	3.8	50
25	CO2 electroreduction to formate: Continuous single-pass operation in a filter-press reactor at high current densities using Bi gas diffusion electrodes. Journal of CO2 Utilization, 2019, 34, 12-19.	6.8	68
26	Plasmon-driven catalysis of adsorbed p-nitroaniline (PNA) by surface-enhanced Raman scattering (SERS): Platinum versus silver. Surface Science, 2019, 687, 17-24.	1.9	3
27	Bi-modified Pt Electrodes toward Glycerol Electrooxidation in Alkaline Solution: Effects on Activity and Selectivity. ACS Catalysis, 2019, 9, 5104-5110.	11.2	68
28	Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. Journal of CO2 Utilization, 2019, 31, 135-142.	6.8	97
29	Editorial: Electrocatalysis on Shape-Controlled Nanoparticles. Frontiers in Chemistry, 2019, 7, 885.	3.6	1
30	Electrocatalytic enhancement of formic acid oxidation reaction by acetonitrile on well-defined platinum surfaces. Electrochimica Acta, 2019, 295, 835-845.	5.2	14
31	Coherent Bragg imaging of 60â€nm Au nanoparticles under electrochemical control at the NanoMAX beamline. Journal of Synchrotron Radiation, 2019, 26, 1830-1834.	2.4	19
32	Pt-Rich _{core} /Sn-Rich _{subsurface} /Pt _{skin} Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 2018, 140, 3791-3797.	13.7	166
33	Adatom decorated shape-controlled metal nanoparticles: Advanced electrocatalysts for energy conversion. Current Opinion in Electrochemistry, 2018, 9, 121-128.	4.8	10
34	On the quality and stability of preferentially oriented (100) Pt nanoparticles: An electrochemical insight. Journal of Electroanalytical Chemistry, 2018, 808, 433-438.	3.8	18
35	Citrate-Coated, Size-Tunable Octahedral Platinum Nanocrystals: A Novel Route for Advanced Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 41608-41617.	8.0	24

3. Shape-controlled metal nanoparticles for electrocatalytic applications. , 2018, , 103-156.

1

#	Article	IF	CITATIONS
37	Electrocatalytic studies on imidazolium based ionic liquids: defining experimental conditions. Physical Chemistry Chemical Physics, 2018, 20, 19160-19167.	2.8	17
38	Oxygen crossover effect on palladium and platinum based electrocatalysts during formic acid oxidation studied by scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2017, 793, 218-225.	3.8	15
39	Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium. Langmuir, 2017, 33, 865-871.	3.5	20
40	Electrocatalysis on shape-controlled metal nanoparticles: Progress in surface cleaning methodologies. Current Opinion in Electrochemistry, 2017, 1, 34-39.	4.8	58
41	Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO 2 electroreduction to formate. Journal of CO2 Utilization, 2017, 18, 222-228.	6.8	152
42	Structure, surface chemistry and electrochemical de-alloying of bimetallic PtxAg100-x nanoparticles: Quantifying the changes in the surface properties for adsorption and electrocatalytic transformation upon selective Ag removal. Journal of Electroanalytical Chemistry, 2017, 793, 164-173.	3.8	9
43	Loading effect of carbon-supported platinum nanocubes on oxygen electroreduction. Electrochimica Acta, 2017, 251, 155-166.	5.2	28
44	Electroreduction of Oxygen on PdPt Alloy Nanocubes in Alkaline and Acidic Media. ChemElectroChem, 2017, 4, 2547-2555.	3.4	14
45	A non-enzymatic ethanol sensor based on a nanostructured catalytic disposable electrode. Analytical Methods, 2017, 9, 5108-5114.	2.7	12
46	Chronoamperometric Study of Ammonia Oxidation in a Direct Ammonia Alkaline Fuel Cell under the Influence of Microgravity. Microgravity Science and Technology, 2017, 29, 253-261.	1.4	12
47	Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanoparticles. Applied Catalysis B: Environmental, 2017, 201, 48-57.	20.2	47
48	Ultra-low platinum coverage at gold electrode surfaces: A different approach to the reversible hydrogen reaction. Journal of Electroanalytical Chemistry, 2017, 793, 41-47.	3.8	2
49	Understanding CO oxidation reaction on platinum nanoparticles. Journal of Electroanalytical Chemistry, 2017, 793, 126-136.	3.8	22
50	Formic acid electrooxidation on thallium modified platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 2017, 800, 82-88.	3.8	12
51	Recent Advances in the Use of Shape-Controlled Metal Nanoparticles in Electrocatalysis. Nanostructure Science and Technology, 2016, , 31-92.	0.1	8
52	A Facile and Costâ€effective Electroanalytical Strategy for the Quantification of Deoxyguanosine and Deoxyadenosine in Oligonucleotides Using Screenâ€printed Graphite Electrodes. Electroanalysis, 2016, 28, 3066-3074.	2.9	4
53	Recent progress in oxygen reduction electrocatalysis on Pd-based catalysts. Journal of Electroanalytical Chemistry, 2016, 780, 327-336.	3.8	77
54	The effect of interfacial pH on the surface atomic elemental distribution and on the catalytic reactivity of shape-selected bimetallic nanoparticles towards oxygen reduction. Nano Energy, 2016, 27, 390-401.	16.0	33

#	Article	IF	CITATIONS
55	Electrochemical Characterisation of Platinum Nanoparticles Prepared in a Waterâ€inâ€Oil Microemulsion in the Presence of Different Modifiers and Metal Precursors. ChemElectroChem, 2016, 3, 1601-1608.	3.4	9
56	Carbon materials for the electrooxidation of nucleobases, nucleosides and nucleotides toward cytosine methylation detection: a review. Analytical Methods, 2016, 8, 702-715.	2.7	31
57	Oxygen electroreduction on carbon-supported Pd nanocubes in acid solutions. Electrochimica Acta, 2016, 188, 301-308.	5.2	37
58	Electrochemical reactivity and stability of platinum nanoparticles in imidazolium-based ionic liquids. Journal of Solid State Electrochemistry, 2016, 20, 1043-1052.	2.5	13
59	Electrochemical detection of cytosine and 5-methylcytosine on Au(111) surfaces. Electrochemistry Communications, 2016, 65, 27-30.	4.7	10
60	Adatom modified shape-controlled platinum nanoparticles towards ethanol oxidation. Electrochimica Acta, 2016, 196, 270-279.	5.2	15
61	Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study. Journal of Electroanalytical Chemistry, 2016, 763, 116-124.	3.8	46
62	Oxygen reduction reaction on carbon-supported palladium nanocubes in alkaline media. Electrochemistry Communications, 2016, 64, 9-13.	4.7	44
63	Oxidation of ethanol on platinum nanoparticles: surface structure and aggregation effects in alkaline medium. Journal of Solid State Electrochemistry, 2016, 20, 1095-1106.	2.5	20
64	Influence of the metal loading on the electrocatalytic activity of carbon-supported (100) Pt nanoparticles. Journal of Solid State Electrochemistry, 2016, 20, 1107-1118.	2.5	7
65	Electrocatalysis on Shape-Controlled Pt Nanoparticles. , 2016, , 111-170.		6
66	Surface Treatment Strategies on Catalytic Metal Nanoparticles. , 2016, , 1101-1125.		0
67	Electrochemical Oxidation of Small Organic Molecules on Au Nanoparticles with Preferential Surface Orientation. ChemElectroChem, 2015, 2, 958-962.	3.4	18
68	Voltammetric Behaviour of 7â€Methylguanine Using Screenâ€printed Graphite Electrodes: towards a Guanine Methylation Electrochemical Sensor. Electroanalysis, 2015, 27, 2766-2772.	2.9	17
69	Electrochemical Characterization of Clean Shape ontrolled Pt Nanoparticles Prepared in Presence of Oleylamine/Oleic Acid. Electroanalysis, 2015, 27, 945-956.	2.9	47
70	Towards the understanding of the interfacial pH scale at Pt(1 1 1) electrodes. Electrochimica Acta, 2015, 162, 138-145.	5.2	131
71	Surface Treatment Strategies on Catalytic Metal Nanoparticles. , 2015, , 1-21.		0
72	PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media. Electrochemistry Communications, 2015, 56, 11-15.	4.7	37

5

#	Article	IF	CITATIONS
73	Spectroelectrochemical Study of the Photoinduced Catalytic Formation of 4,4′-Dimercaptoazobenzene from 4-Aminobenzenethiol Adsorbed on Nanostructured Copper. Journal of Physical Chemistry C, 2015, 119, 12312-12324.	3.1	21
74	Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Applied Catalysis B: Environmental, 2015, 176-177, 709-717.	20.2	249
75	Carbon-supported shape-controlled Pt nanoparticle electrocatalysts for direct alcohol fuel cells. Electrochemistry Communications, 2015, 55, 47-50.	4.7	39
76	Structure and morphology of shape-controlled Pd nanocrystals. Journal of Applied Crystallography, 2015, 48, 1534-1542.	4.5	21
77	Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering. Journal of the American Chemical Society, 2015, 137, 14992-14998.	13.7	85
78	Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO ₂ reduction. Journal of Materials Chemistry A, 2015, 3, 23690-23698.	10.3	138
79	Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt–Ni–Co Alloy Nanocatalysts. Nano Letters, 2015, 15, 7473-7480.	9.1	156
80	Further Insights into the Formic Acid Oxidation Mechanism on Platinum: pH and Anion Adsorption Effects. Electrochimica Acta, 2015, 180, 479-485.	5.2	70
81	Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size. Applied Energy, 2015, 157, 165-173.	10.1	116
82	Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes. ACS Catalysis, 2015, 5, 645-654.	11.2	81
83	Spectroelectrochemical behavior of 4-aminobenzenethiol on nanostructured platinum and silver electrodes. Surface Science, 2015, 631, 213-219.	1.9	8
84	An Easy Method for Calculating Kinetic Parameters of Electrochemical Mechanisms: Temkin's Formalism. Electrocatalysis, 2015, 6, 148-154.	3.0	4
85	Rapid screening of silver nanoparticles for the catalytic degradation of chlorinated pollutants in water. Applied Catalysis B: Environmental, 2015, 163, 554-563.	20.2	29
86	Formic Acid Electrooxidation on Nobleâ€Metal Electrodes: Role and Mechanistic Implications of pH, Surface Structure, and Anion Adsorption. ChemElectroChem, 2014, 1, 1075-1083.	3.4	77
87	Synthesis of core–shell silver–platinum nanoparticles, improving shell integrity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 178-183.	4.7	36
88	Formic acid electrooxidation on thallium-decorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 13616-13624.	2.8	27
89	Bismuth and CO Coadsorption on Platinum Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 23100-23110.	3.1	15
90	Shapeâ€Dependent Electrocatalysis: Oxygen Reduction on Carbonâ€Supported Gold Nanoparticles. ChemElectroChem, 2014, 1, 1338-1347.	3.4	40

José Solla-Gullón

#	Article	IF	CITATIONS
91	Synthesis and Electrocatalytic Properties of H ₂ SO ₄ â€Induced (100) Pt Nanoparticles Prepared in Waterâ€inâ€Oil Microemulsion. ChemPhysChem, 2014, 15, 1997-2001.	2.1	20
92	Effects of the anion adsorption and pH on the formic acid oxidation reaction on Pt(111) electrodes. Electrochimica Acta, 2014, 140, 511-517.	5.2	70
93	On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. Journal of Electroanalytical Chemistry, 2014, 716, 16-22.	3.8	26
94	Electrocatalytic activity of Ni-doped nanoporous carbons in the electrooxidation of propargyl alcohol. Carbon, 2014, 73, 291-302.	10.3	9
95	Synthesis of Pt Nanoparticles in Water-in-Oil Microemulsion: Effect of HCl on Their Surface Structure. Journal of the American Chemical Society, 2014, 136, 1280-1283.	13.7	124
96	Electrochemical synthesis at pre-pilot scale of 1-phenylethanol by cathodic reduction of acetophenone using a solid polymer electrolyte. Electrochemistry Communications, 2013, 34, 316-319.	4.7	11
97	Surface structure and anion effects in the oxidation of ethanol on platinum nanoparticles. Journal of Materials Chemistry A, 2013, 1, 7068.	10.3	52
98	Tailoring properties of platinum supported catalysts by irreversible adsorbed adatoms toward ethanol oxidation for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2013, 140-141, 378-385.	20.2	33
99	Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acidÂoxidation. Journal of Power Sources, 2013, 225, 323-329.	7.8	52
100	Do You Really Understand the Electrochemical Nernst Equation?. Electrocatalysis, 2013, 4, 1-9.	3.0	4
101	Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. Catalysis Today, 2013, 202, 2-11.	4.4	50
102	Towards More Active and Stable Electrocatalysts for Formic Acid Electrooxidation: Antimonyâ€Decorated Octahedral Platinum Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 964-967.	13.8	52
103	Electrocatalytic hydrogenation of acetophenone using a Polymer Electrolyte Membrane Electrochemical Reactor. Electrochimica Acta, 2013, 91, 69-74.	5.2	40
104	Au Electrocatalysis for Oxygen Reduction. Lecture Notes in Energy, 2013, , 483-512.	0.3	2
105	Ultra-low platinum coverage at gold electrodes and its effect on the hydrogen reaction in acidic solutions. Electrochimica Acta, 2013, 87, 669-675.	5.2	29
106	Nitrate Reduction on Platinum (111) Surfaces Modifiedl with Bi: Single Crystalsl and Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2012, 226, 901-917.	2.8	6
107	Role of surface defect sites: from Pt model surfaces to shape-controlled nanoparticles. Chemical Science, 2012, 3, 136-147.	7.4	109
108	SERS on (111) Surface Nanofacets at Pt Nanoparticles: The Case of Acetaldehyde Oxime Reduction. Journal of Physical Chemistry C, 2012, 116, 10781-10789.	3.1	11

#	Article	IF	CITATIONS
109	Understanding the Nernst Equation and Other Electrochemical Concepts: An Easy Experimental Approach for Students. Journal of Chemical Education, 2012, 89, 936-939.	2.3	38
110	Effect of the nature of (100) surface sites on the electroactivity of macroscopic Pt electrodes for the electrooxidation of ammonia. Electrochemistry Communications, 2012, 22, 197-199.	4.7	43
111	Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 10258.	2.8	90
112	Pd-Modified Shape-Controlled Pt Nanoparticles Towards Formic Acid Electrooxidation. Electrocatalysis, 2012, 3, 313-323.	3.0	13
113	Electrochemical Characterization of Shape-Controlled Pt Nanoparticles in Different Supporting Electrolytes. ACS Catalysis, 2012, 2, 901-910.	11.2	238
114	Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support. International Journal of Hydrogen Energy, 2012, 37, 393-404.	7.1	49
115	Errors in the use of the Koutecky–Levich plots. Electrochemistry Communications, 2012, 15, 42-45.	4.7	27
116	Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochimica Acta, 2012, 59, 329-335.	5.2	141
117	Bismuth-modified carbon supported Pt nanoparticles as electrocatalysts for direct formic acid fuel cells. Electrochimica Acta, 2012, 63, 105-111.	5.2	25
118	Shape dependent electrocatalysis. Annual Reports on the Progress of Chemistry Section C, 2011, 107, 263.	4.4	138
119	Significantly Enhancing Catalytic Activity of Tetrahexahedral Pt Nanocrystals by Bi Adatom Decoration. Journal of the American Chemical Society, 2011, 133, 12930-12933.	13.7	132
120	Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles. Electrochemistry Communications, 2011, 13, 1194-1197.	4.7	35
121	Progress in the understanding of surface structure and surfactant influence on the electrocatalytic activity of gold nanoparticles. Electrochimica Acta, 2011, 56, 9568-9574.	5.2	14
122	Imaging decorated platinum single crystal electrodes by scanning electrochemical microscopy. Electrochimica Acta, 2011, 56, 10708-10712.	5.2	4
123	On the behavior of the Pt(100) and vicinal surfaces in alkaline media. Electrochimica Acta, 2011, 58, 184-192.	5.2	55
124	Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution. Carbon, 2011, 49, 4031-4039.	10.3	76
125	Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: Evidences of atomic surface disordering. Electrochemistry Communications, 2011, 13, 502-505.	4.7	74
126	Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochemistry Communications, 2011, 13, 734-737.	4.7	108

#	Article	IF	CITATIONS
127	Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions. Electrochimica Acta, 2011, 56, 6702-6708.	5.2	68
128	Ethanol Electrooxidation on PtSnNi/C Nanoparticles Prepared in Water-In-Oil Microemulsion. ECS Transactions, 2011, 41, 1307-1316.	0.5	4
129	Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion. Journal of Nanoparticle Research, 2010, 12, 1149-1159.	1.9	13
130	Pd Adatom Decorated (100) Preferentially Oriented Pt Nanoparticles for Formic Acid Electrooxidation. Angewandte Chemie - International Edition, 2010, 49, 6998-7001.	13.8	86
131	CO electrooxidation on carbon supported platinum nanoparticles: Effect of aggregation. Journal of Electroanalytical Chemistry, 2010, 644, 117-126.	3.8	117
132	Characterization of (111) surface tailored Pt nanoparticles by electrochemistry and X-ray powder diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 83-90.	5.6	18
133	Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions. Electrochimica Acta, 2010, 55, 794-803.	5.2	74
134	The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: The role of anion adsorption in fundamental electrocatalysis. Electrochimica Acta, 2010, 55, 7982-7994.	5.2	171
135	Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods. Electrochimica Acta, 2010, 55, 8252-8257.	5.2	50
136	Formic Acid Oxidation on Shape-Controlled Pt Nanoparticles Studied by Pulsed Voltammetry. Journal of Physical Chemistry C, 2010, 114, 13802-13812.	3.1	101
137	Imaging Structure Sensitive Catalysis on Different Shape-Controlled Platinum Nanoparticles. Journal of the American Chemical Society, 2010, 132, 5622-5624.	13.7	220
138	Electrochemical Reactivity of Aromatic Molecules at Nanometer-Sized Surface Domains: From Pt(<i>hkl</i>) Single Crystal Electrodes to Preferentially Oriented Platinum Nanoparticles. Journal of the American Chemical Society, 2010, 132, 2233-2242.	13.7	29
139	<i>In Situ</i> Surface Characterization and Oxygen Reduction Reaction on Shape-Controlled Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 2256-2273.	0.9	65
140	Electrosynthesis of L-Cysteine on a Dispersed Pb/Carbon Black Electrode. Journal of the Electrochemical Society, 2009, 156, E154.	2.9	4
141	CO monolayer oxidation on stepped Pt(S) [(nâ~'1)(100)×(110)] surfaces. Electrochimica Acta, 2009, 54, 4459-4466.	5.2	62
142	Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2009, 11, 1081-1084.	4.7	37
143	Alkylidynes-modified Pt nanoparticles: A spectroelectrochemical (SERS) and electrocatalytic study. Electrochimica Acta, 2009, 54, 6971-6977.	5.2	4
144	Formic acid electrooxidation on Bi-modified Pt(110) single crystal electrodes. Journal of Electroanalytical Chemistry, 2009, 637, 63-71.	3.8	35

#	Article	IF	CITATIONS
145	Electrooxidation of methanol and 2-propanol mixtures at platinum single crystal electrodes. Electrochimica Acta, 2009, 54, 6576-6583.	5.2	42
146	Cold supported catalytic layer: An intermediate step between fundamental and applied fuel cell studies. Electrochimica Acta, 2009, 54, 7071-7077.	5.2	5
147	Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles. Physical Chemistry Chemical Physics, 2009, 11, 416-424.	2.8	65
148	Selective electrocatalysis of acetaldehyde oxime reduction on (111) sites of platinum single crystal electrodes and nanoparticles surfaces. Journal of Solid State Electrochemistry, 2008, 12, 575-581.	2.5	13
149	A combination of SERS and electrochemistry in Pt nanoparticle electrocatalysis: Promotion of formic acid oxidation by ethylidyne. Electrochemistry Communications, 2008, 10, 319-322.	4.7	19
150	Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Physical Chemistry Chemical Physics, 2008, 10, 3689.	2.8	265
151	Hydrogenation of α, β unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon. Journal of Catalysis, 2008, 253, 159-166.	6.2	95
152	Surface characterization of platinum electrodes. Physical Chemistry Chemical Physics, 2008, 10, 1359-1373.	2.8	351
153	Electrochemistry of Shape-Controlled Catalysts:  Oxygen Reduction Reaction on Cubic Gold Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 14078-14083.	3.1	145
154	Electrochemical characterization and reactivity of Pt nanoparticles supported on single-walled carbon nanotubes. Electrochimica Acta, 2007, 52, 5582-5590.	5.2	27
155	Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd,) Tj ETQq1	1 9.78431	4 ſġ₿T /Ovei
156	Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes. Electrochemistry Communications, 2006, 8, 102-106.	4.7	61
157	CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochemistry Communications, 2006, 8, 189-194.	4.7	160
158	DEMS study of ammonia oxidation on platinum basal planes. Journal of Electroanalytical Chemistry, 2006, 588, 331-338.	3.8	99
159	Formic acid oxidation on Pd-modified Pt(100) and Pt(111) electrodes: A DEMS study. Journal of Applied Electrochemistry, 2006, 36, 1207-1214.	2.9	42
160	Methanol oxidation on gold nanoparticles in alkaline media: Unusual electrocatalytic activity. Electrochimica Acta, 2006, 52, 1662-1669.	5.2	128
161	Specific surface reactions for identification of platinum surface domains. Electrochimica Acta, 2005, 50, 4308-4317.	5.2	83
162	Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(100). Electrochimica Acta, 2005, 50, 3111-3121.	5.2	57

#	Article	IF	CITATIONS
163	Surface-Enhanced Raman Spectroscopy Study of Ethylene Adsorbed on a Pt Electrode Decorated with Pt Nanoparticles. ChemPhysChem, 2005, 6, 2017-2021.	2.1	26
164	Nanoparticles-on-electrode approach forin situ surface-enhanced Raman spectroscopy studies with platinum-group metals: examples and prospects. Journal of Raman Spectroscopy, 2005, 36, 613-622.	2.5	54
165	Ammonia Selective Oxidation on Pt(100) Sites in an Alkaline Medium. Journal of Physical Chemistry B, 2005, 109, 12914-12919.	2.6	118
166	Characterization of the Surface Structure of Gold Nanoparticles and Nanorods Using Structure Sensitive Reactions. Journal of Physical Chemistry B, 2005, 109, 12651-12654.	2.6	85
167	Determination of (111) Ordered Domains on Platinum Electrodes by Irreversible Adsorption of Bismuth. Analytical Chemistry, 2005, 77, 5317-5323.	6.5	66
168	In Situ Surface Characterization of Preferentially Oriented Platinum Nanoparticles by Using Electrochemical Structure Sensitive Adsorption Reactions. Journal of Physical Chemistry B, 2004, 108, 13573-13575.	2.6	116
169	Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 2004, 6, 1080-1084.	4.7	218
170	Electrochemical characterization of platinum–ruthenium nanoparticles prepared by water-in-oil microemulsion. Electrochimica Acta, 2004, 49, 5079-5088.	5.2	100
171	Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2004, 574, 185-196.	3.8	156
172	In Situ Surface Enhanced Raman Spectroscopy on Electrodes with Platinum and Palladium Nanoparticle Ensembles. Journal of Physical Chemistry B, 2004, 108, 9943-9949.	2.6	92
173	Electrochemical characterisation of platinum–palladium nanoparticles prepared in a water-in-oil microemulsion. Journal of Electroanalytical Chemistry, 2003, 554-555, 273-284.	3.8	121
174	Synthesis and Electrochemical Decontamination of Platinum-Palladium Nanoparticles Prepared by Water-in-Oil Microemulsion. Journal of the Electrochemical Society, 2003, 150, E104.	2.9	122
175	Electrochemical and electrocatalytic behaviour of platinum–palladium nanoparticle alloys. Electrochemistry Communications, 2002, 4, 716-721.	4.7	84
176	Influence of Pb2+ ions in the H2 oxidation on Pt catalyzed hydrogen diffusion anodes in sulfuric acid: presence of oscillatory phenomena. Journal of Power Sources, 2002, 104, 169-174.	7.8	3
177	Methanol Electrooxidation on Platinum/Ruthenium Nanoparticle Catalysts. Journal of Catalysis, 2001, 203, 1-6.	6.2	189
178	Electrochemical characterisation of platinum nanoparticles prepared by microemulsion: how to clean them without loss of crystalline surface structure. Journal of Electroanalytical Chemistry, 2000, 491, 69-77.	3.8	206
179	Electrocatalysis at nanoparticles. SPR Electrochemistry, 0, , 34-70.	0.7	15
180	Continuous gas-phase electrochemical reduction of CO2 to formate using Bi Catalyst Coated Membrane Electrodes in a filter press reactor Â. , 0, , .		0