Marlon R Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Hair Follicle as a Dynamic Miniorgan. Current Biology, 2009, 19, R132-R142.	1.8	814
2	The epidermal growth factor receptor ligands at a glance. Journal of Cellular Physiology, 2009, 218, 460-466.	2.0	363
3	A Key Role for E-cadherin in Intestinal Homeostasis and Paneth Cell Maturation. PLoS ONE, 2010, 5, e14325.	1.1	171
4	Beyond Wavy Hairs. American Journal of Pathology, 2008, 173, 14-24.	1.9	146
5	Sebocytes, multifaceted epithelial cells: Lipid production and holocrine secretion. International Journal of Biochemistry and Cell Biology, 2010, 42, 181-185.	1.2	143
6	Beyond acne: Current aspects of sebaceous gland biology and function. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 319-334.	2.6	105
7	The EGFR network in bone biology and pathology. Trends in Endocrinology and Metabolism, 2009, 20, 517-524.	3.1	75
8	Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips. Genes, 2017, 8, 244.	1.0	75
9	A practical guide for the study of human and murine sebaceous glands <i>in situ</i> . Experimental Dermatology, 2013, 22, 631-637.	1.4	59
10	Betacellulin Overexpression in Transgenic Mice Causes Disproportionate Growth, Pulmonary Hemorrhage Syndrome, and Complex Eye Pathology. Endocrinology, 2005, 146, 5237-5246.	1.4	51
11	Neuroendocrinology and neurobiology of sebaceous glands. Biological Reviews, 2020, 95, 592-624.	4.7	48
12	E adherin's role in development, tissue homeostasis and disease: Insights from mouse models. BioEssays, 2015, 37, 294-304.	1.2	45
13	Deciphering the functions of the hair follicle infundibulum in skin physiology and disease. Cell and Tissue Research, 2014, 358, 697-704.	1.5	40
14	The Munich MIDY Pig Biobank – A unique resource for studying organ crosstalk in diabetes. Molecular Metabolism, 2017, 6, 931-940.	3.0	39
15	A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nature Medicine, 2017, 23, 1191-1202.	15.2	38
16	Thirty-eight-negative kinase 1 mediates trauma-induced intestinal injury and multi-organ failure. Journal of Clinical Investigation, 2018, 128, 5056-5072.	3.9	36
17	Betacellulin Regulates Hair Follicle Development and Hair Cycle Induction and Enhances Angiogenesis in Wounded Skin. Journal of Investigative Dermatology, 2008, 128, 1256-1265.	0.3	35
18	The epidermal growth factor receptor and its ligands in female reproduction: Insights from rodent models. Cytokine and Growth Factor Reviews, 2008, 19, 173-181.	3.2	34

MARLON R SCHNEIDER

#	Article	IF	CITATIONS
19	High Cortical Bone Mass Phenotype in Betacellulin Transgenic Mice Is EGFR Dependent. Journal of Bone and Mineral Research, 2009, 24, 455-467.	3.1	34
20	Structure and function of epigen, the last EGFR ligand. Seminars in Cell and Developmental Biology, 2014, 28, 57-61.	2.3	30
21	Sebaceous lipids are essential for water repulsion, protection against UVB-induced apoptosis, and ocular integrity in mice. Development (Cambridge), 2016, 143, 1823-31.	1.2	29
22	Characterization of the sebocyte lipid droplet proteome reveals novel potential regulators of sebaceous lipogenesis. Experimental Cell Research, 2015, 332, 146-155.	1.2	28
23	Primary sebocytes and sebaceous gland cell lines for studying sebaceous lipogenesis and sebaceous gland diseases. Experimental Dermatology, 2018, 27, 484-488.	1.4	27
24	Organ-on-Chip Technology: Current State and Future Developments. Genes, 2017, 8, 266.	1.0	26
25	The ABC of BTC: Structural properties and biological roles of betacellulin. Seminars in Cell and Developmental Biology, 2014, 28, 42-48.	2.3	25
26	Overexpression of Epigen during Embryonic Development Induces Reversible, Epidermal Growth Factor Receptor-Dependent Sebaceous Gland Hyperplasia. Molecular and Cellular Biology, 2014, 34, 3086-3095.	1.1	25
27	Loss of DRO1/CCDC80 results in obesity and promotes adipocyte differentiation. Molecular and Cellular Endocrinology, 2017, 439, 286-296.	1.6	23
28	Differentially regulated microRNAs during human sebaceous lipogenesis. Journal of Dermatological Science, 2013, 70, 88-93.	1.0	22
29	Genetically modified laboratory mice with sebaceous glands abnormalities. Cellular and Molecular Life Sciences, 2016, 73, 4623-4642.	2.4	22
30	Lipid droplets and associated proteins in sebocytes. Experimental Cell Research, 2016, 340, 205-208.	1.2	22
31	Expression of dermcidin in sebocytes supports a role for sebum in the constitutive innate defense of human skin. Journal of Dermatological Science, 2016, 81, 124-126.	1.0	22
32	Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal. Archives of Dermatological Research, 2018, 310, 453-462.	1.1	21
33	Perilipin 3 modulates specific lipogenic pathways in SZ95 sebocytes. Experimental Dermatology, 2014, 23, 759-761.	1.4	20
34	ERBB2 Is Essential for the Growth of Chemically Induced Skin Tumors in Mice. Journal of Investigative Dermatology, 2017, 137, 921-930.	0.3	20
35	Sebaceous gland: Milestones of 30â€year modelling research dedicated to the "brain of the skin― Experimental Dermatology, 2020, 29, 1069-1079.	1.4	20
36	Fifty years of the asebia mouse: origins, insights and contemporary developments. Experimental Dermatology, 2015, 24, 340-341.	1.4	18

MARLON R SCHNEIDER

#	Article	IF	CITATIONS
37	EGFR/ERBB receptors differentially modulate sebaceous lipogenesis. FEBS Letters, 2015, 589, 1376-1382.	1.3	18
38	Genetic mouse models for skin research: Strategies and resources. Genesis, 2012, 50, 652-664.	0.8	17
39	Extrinsic intestinal denervation modulates tumor development in the small intestine of ApcMin/+ mice. Journal of Experimental and Clinical Cancer Research, 2015, 34, 39.	3.5	17
40	ERBB3 is required for tumor promotion in a mouse model ofÂskin carcinogenesis. Molecular Oncology, 2015, 9, 1825-1833.	2.1	17
41	The receptor tyrosine kinase ERBB4 is expressed in skin keratinocytes and influences epidermal proliferation. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 958-966.	1.1	17
42	DRO1 Inactivation Drives Colorectal Carcinogenesis in <i>ApcMin</i> /+ Mice. Molecular Cancer Research, 2014, 12, 1655-1662.	1.5	16
43	Coming home at last: dermal white adipose tissue. Experimental Dermatology, 2014, 23, 634-635.	1.4	16
44	Cortactin is a scaffolding platform for the E-Cadherin adhesion complex controlled by protein kinase D1 phosphorylation. Journal of Cell Science, 2016, 129, 2416-29.	1.2	15
45	Betacellulin regulates schwann cell proliferation and myelin formation in the injured mouse peripheral nerve. Glia, 2017, 65, 657-669.	2.5	13
46	Mammalian VPS45 orchestrates trafficking through the endosomal system. Blood, 2021, 137, 1932-1944.	0.6	13
47	Applicability of organ-on-chip systems in toxicology and pharmacology. Critical Reviews in Toxicology, 2021, 51, 540-554.	1.9	13
48	Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone. Bone, 2012, 50, 237-244.	1.4	12
49	Endocrine Disruptors: Adverse Health Effects Mediated by EGFR?. Trends in Endocrinology and Metabolism, 2018, 29, 69-71.	3.1	12
50	Genotyping of transgenic mice: Old principles and recent developments. Analytical Biochemistry, 2005, 344, 1-7.	1.1	11
51	Lipid droplets and associated proteins in the skin: basic research and clinical perspectives. Archives of Dermatological Research, 2016, 308, 1-6.	1.1	11
52	Shedding light into the black box: Advances in in vitro systems for studying implantation. Developmental Biology, 2020, 463, 1-10.	0.9	11
53	Von Kossa and his staining technique. Histochemistry and Cell Biology, 2021, 156, 523.	0.8	11
54	LC-MS/MS analysis reveals a broad functional spectrum of proteins in the secretome of sebocytes. Experimental Dermatology, 2016, 25, 66-67.	1.4	10

MARLON R SCHNEIDER

#	Article	IF	CITATIONS
55	<scp>CRISPR</scp> â€assisted receptor deletion reveals distinct roles for <scp>ERBB</scp> 2 and <scp>ERBB</scp> 3 in skin keratinocytes. FEBS Journal, 2017, 284, 3339-3349.	2.2	10
56	The transmembrane protein LRIG2 increases tumor progression in skin carcinogenesis. Molecular Oncology, 2019, 13, 2476-2492.	2.1	10
57	Osteoblast-specific overexpression of amphiregulin leads to transient increase in femoral cancellous bone mass in mice. Bone, 2015, 81, 36-46.	1.4	9
58	Inactivation of Itf2 promotes intestinal tumorigenesis in ApcMin/+ mice. Biochemical and Biophysical Research Communications, 2015, 461, 249-253.	1.0	8
59	Loss of DRO1/CCDC80 in the tumor microenvironment promotes carcinogenesis. Oncotarget, 2022, 13, 615-627.	0.8	8
60	Amphiregulin lacks an essential role for the bone anabolic action of parathyroid hormone. Molecular and Cellular Endocrinology, 2015, 417, 158-165.	1.6	7
61	Unraveling ERBB network dynamics upon betacellulin signaling in pancreatic ductal adenocarcinoma in mice. Molecular Oncology, 2020, 14, 1653-1669.	2.1	7
62	The magnificent seven: Epidermal growth factor receptor ligands. Seminars in Cell and Developmental Biology, 2014, 28, 1.	2.3	6
63	Angiopoietin-like 4, a protein strongly induced during sebocyte differentiation, regulates sebaceous lipogenesis but is dispensable for sebaceous gland function in vivo. Journal of Dermatological Science, 2014, 75, 148-150.	1.0	6
64	Bovine seminal plasma osteopontin: Structural modelling, recombinant expression and its relationship with semen quality. Andrologia, 2021, 53, e13905.	1.0	5
65	EGFR ligands exert diverging effects on male reproductive organs. Experimental and Molecular Pathology, 2010, 88, 216-218.	0.9	4
66	Transgenic mouse lines help decipher the roles of EGFR ligands in the skin. Experimental Dermatology, 2016, 25, 185-186.	1.4	4
67	Franz von Leydig (1821–1908), pioneer of comparative histology. Journal of Medical Biography, 2012, 20, 79-83.	0.1	3
68	The 3R approach to experimental dermatology. Experimental Dermatology, 2018, 27, 441-442.	1.4	3
69	Epidermal overexpression of LRIG1 disturbs development and homeostasis in skin by disrupting the ERBB system. Journal of Dermatological Science, 2019, 96, 185-188.	1.0	3
70	The transmembrane protein LRIG1 triggers melanocytic tumor development following chemically induced skin carcinogenesis. Molecular Oncology, 2021, 15, 2140-2155.	2.1	3
71	Betacellulin transgenic mice develop urothelial hyperplasia and show sex-dependent reduction in urinary major urinary protein content. Experimental and Molecular Pathology, 2015, 99, 33-38. 	0.9	2
72	Beyond the adipocyte paradigm: Heterogeneity of lipid droplets and associated proteins. Experimental Cell Research, 2016, 340, 171.	1.2	1

#	Article	IF	CITATIONS
73	Next milestone in understanding early life—blastoids mimic embryogenesis in vitro. Biology of Reproduction, 2019, 100, 11-12.	1.2	1
74	Losing fat through the skin. Science, 2021, 373, 487-488.	6.0	0