Pamela A Wearsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6974172/publications.pdf

Version: 2024-02-01

25 papers 4,367 citations

331670 21 h-index 25 g-index

25 all docs

25 docs citations

25 times ranked 5906 citing authors

#	Article	IF	CITATIONS
1	Endothelial PERK-ATF4-JAG1 axis activated by T-ALL remodels bone marrow vascular niche. Theranostics, 2022, 12, 2894-2907.	10.0	2
2	The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Frontiers in Immunology, 2020, 11, 906.	4.8	758
3	Endoscopic ultrasound FNA: An illustrated review of spindle cell neoplasms of the upper gastrointestinal tract including a novel case of gastric plexiform fibromyxoma. Diagnostic Cytopathology, 2018, 46, 730-738.	1.0	14
4	<i>Mycobacterium tuberculosis</i> Membrane Vesicles Inhibit T Cell Activation. Journal of Immunology, 2017, 198, 2028-2037.	0.8	66
5	Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles. Frontiers in Cell and Developmental Biology, 2016, 4, 125.	3.7	21
6	Bacterial Membrane Vesicles Mediate the Release of <i>Mycobacterium tuberculosis</i> Lipoglycans and Lipoproteins from Infected Macrophages. Journal of Immunology, 2015, 195, 1044-1053.	0.8	107
7	Toll-Like Receptor 2-Dependent Extracellular Signal-Regulated Kinase Signaling in Mycobacterium tuberculosis-Infected Macrophages Drives Anti-Inflammatory Responses and Inhibits Th1 Polarization of Responding T Cells. Infection and Immunity, 2015, 83, 2242-2254.	2.2	94
8	Mycobacterium tuberculosis Lipoprotein LprG Binds Lipoarabinomannan and Determines Its Cell Envelope Localization to Control Phagolysosomal Fusion. PLoS Pathogens, 2014, 10, e1004471.	4.7	68
9	TLR2 engagement on CD4 ⁺ T cells enhances effector functions and protective responses to <i>Mycobacterium tuberculosis</i> . European Journal of Immunology, 2014, 44, 1410-1421.	2.9	32
_			
10	Pathways of Antigen Processing. Annual Review of Immunology, 2013, 31, 443-473.	21.8	1,224
10	Pathways of Antigen Processing. Annual Review of Immunology, 2013, 31, 443-473. In Vitro Reconstitution of the MHC Class I Peptide-Loading Complex. Methods in Molecular Biology, 2013, 960, 67-79.	0.9	1,224
	In Vitro Reconstitution of the MHC Class I Peptide-Loading Complex. Methods in Molecular Biology,		
11	In Vitro Reconstitution of the MHC Class I Peptide-Loading Complex. Methods in Molecular Biology, 2013, 960, 67-79. Type I IFN Drives a Distinctive Dendritic Cell Maturation Phenotype That Allows Continued Class II MHC	0.9	4
11 12	In Vitro Reconstitution of the MHC Class I Peptide-Loading Complex. Methods in Molecular Biology, 2013, 960, 67-79. Type I IFN Drives a Distinctive Dendritic Cell Maturation Phenotype That Allows Continued Class II MHC Synthesis and Antigen Processing. Journal of Immunology, 2012, 188, 3116-3126. A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. Proceedings of the National Academy of Sciences of the United States of America,	0.9	125
11 12 13	In Vitro Reconstitution of the MHC Class I Peptide-Loading Complex. Methods in Molecular Biology, 2013, 960, 67-79. Type I IFN Drives a Distinctive Dendritic Cell Maturation Phenotype That Allows Continued Class II MHC Synthesis and Antigen Processing. Journal of Immunology, 2012, 188, 3116-3126. A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4956-4961. Essential glycan-dependent interactions optimize MHC class I peptide loading. Proceedings of the	0.9 0.8 7.1	4 125 68
11 12 13	In Vitro Reconstitution of the MHC Class I Peptide-Loading Complex. Methods in Molecular Biology, 2013, 960, 67-79. Type I IFN Drives a Distinctive Dendritic Cell Maturation Phenotype That Allows Continued Class II MHC Synthesis and Antigen Processing. Journal of Immunology, 2012, 188, 3116-3126. A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4956-4961. Essential glycan-dependent interactions optimize MHC class I peptide loading. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4950-4955. Insights into MHC Class I Peptide Loading from the Structure of the Tapasin-ERp57 Thiol	0.9 0.8 7.1 7.1	4 125 68 76
11 12 13 14	In Vitro Reconstitution of the MHC Class I Peptide-Loading Complex. Methods in Molecular Biology, 2013, 960, 67-79. Type I IFN Drives a Distinctive Dendritic Cell Maturation Phenotype That Allows Continued Class II MHC Synthesis and Antigen Processing. Journal of Immunology, 2012, 188, 3116-3126. A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4956-4961. Essential glycan-dependent interactions optimize MHC class I peptide loading. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4950-4955. Insights into MHC Class I Peptide Loading from the Structure of the Tapasin-ERp57 Thiol Oxidoreductase Heterodimer. Immunity, 2009, 30, 21-32.	0.9 0.8 7.1 7.1	4 125 68 76 251

#	Article	IF	CITATION
19	Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunological Reviews, 2005, 207, 145-157.	6.0	384
20	Major Histocompatibility Complex Class I Molecules Expressed with Monoglucosylated N-Linked Glycans Bind Calreticulin Independently of Their Assembly Status. Journal of Biological Chemistry, 2004, 279, 25112-25121.	3.4	39
21	Intracellular Localization of Proteasomal Degradation of a Viral Antigen. Journal of Cell Biology, 1999, 146, 113-124.	5.2	205
22	Structural Transitions Accompanying the Activation of Peptide Binding to the Endoplasmic Reticulum Hsp90 Chaperone GRP94. Biochemistry, 1998, 37, 5709-5719.	2.5	59
23	Interaction of Endoplasmic Reticulum Chaperone GRP94 with Peptide Substrates Is Adenine Nucleotide-independent. Journal of Biological Chemistry, 1997, 272, 5152-5156.	3.4	106
24	Endoplasmic Reticulum Chaperone GRP94 Subunit Assembly Is Regulated through a Defined Oligomerization Domainâ€. Biochemistry, 1996, 35, 16760-16769.	2.5	76
25	Purification and Partial Molecular Characterization of GRP94, an ER Resident Chaperone. Protein Expression and Purification, 1996, 7, 114-121.	1.3	49