
Bo-Zhong Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6971832/publications.pdf Version: 2024-02-01

ΒΟ-ΖΗΟΝΟ ΜΙΙ

#	Article	IF	CITATIONS
1	Carrageenanâ€Based Hybrids with Biopolymers and Nanoâ€&tructured Materials for Biomimetic Applications. Starch/Staerke, 2024, 76, .	2.1	13
2	Long-Term Cultivation and Meta-Omics Reveal Methylotrophic Methanogenesis in Hydrocarbon-Impacted Habitats. Engineering, 2023, 24, 264-275.	6.7	1
3	Genetic engineering of the branchedâ€chain fatty acid biosynthesis pathway to enhance surfactin production from <i>Bacillus subtilis</i> . Biotechnology and Applied Biochemistry, 2023, 70, 238-248.	3.1	5
4	Binary system of alkyl polyether carboxylate and quaternary ammonium with ultra-low interfacial tension at high temperature and a wide range of salinity. Journal of Petroleum Science and Engineering, 2022, 208, 109541.	4.2	6
5	Less bound cations and stable inner salt structure enhanced the salt tolerance of the bio-based zwitterionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128074.	4.7	7
6	Electron donors and mediators in the thermodynamics and kinetics of CO2 bioreduction. Renewable and Sustainable Energy Reviews, 2022, 156, 111997.	16.4	5
7	Prospects of microbial polysaccharidesâ€based hybrid constructs for biomimicking applications. Journal of Basic Microbiology, 2022, 62, 1319-1336.	3.3	10
8	Rheological Properties of a New Microbial Exopolysaccharide Produced by <i>Sphingomonas sp</i> . HS and Its Potential in Enhanced Oil Recovery. Energy & Fuels, 2022, 36, 1792-1798.	5.1	2
9	Enzymatic synthesis of high-titer nicotinamide mononucleotide with a new nicotinamide riboside kinase and an efficient ATP regeneration system. Bioresources and Bioprocessing, 2022, 9, .	4.2	16
10	Discovery of the nonâ€cosmopolitan lineages in <i>Candidatus</i> Thermoprofundales. Environmental Microbiology, 2022, 24, 3063-3080.	3.8	3
11	Stimulation of Bathyarchaeota in enrichment cultures by syringaldehyde, 4-hydroxybenzaldehyde and vanillin under anaerobic conditions. International Biodeterioration and Biodegradation, 2022, 171, 105409.	3.9	7
12	Laboratory studies on a novel salt-tolerant and alkali-free flooding system composed of a biopolymer and a bio-based surfactant for oil recovery. Journal of Petroleum Science and Engineering, 2021, 196, 107736.	4.2	24
13	Dominant and Active Methanogens in the Production Waters From a High-Temperature Petroleum Reservoir by DNA- and RNA-Based Analysis. Geomicrobiology Journal, 2021, 38, 191-198.	2.0	4
14	Formation of viscoelastic micellar solutions by a novel cationic surfactant and anionic salt system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125795.	4.7	7
15	Improvement surfactin production by substitution of promoters in Bacillus subtilis TD7. Applied Environmental Biotechnology, 2021, 6, 31-41.	2.4	5
16	A New Benzylated Fatty Acid Amide Amphoteric Surfactant Derived from Hydrogenated Castor Oil with Ultra‣ow Interfacial Tension between Crude Oil and Brine. Journal of Surfactants and Detergents, 2021, 24, 511-515.	2.1	1
17	One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions. ACS Applied Materials & Interfaces, 2021, 13, 6739-6747.	8.0	10
18	Mixing of Surfactin, an Anionic Biosurfactant, with Alkylbenzene Sulfonate, a Chemically Synthesized Anionic Surfactant, at the <scp><i>n</i>â€Decane</scp> /Water Interface. Journal of Surfactants and Detergents, 2021, 24, 445-457.	2.1	6

#	Article	IF	CITATIONS
19	Consideration of Application Possibility of Biosurfactant and Alkaline-surfactant-polymer (B-ASP) with Ultra-low Crude Oil/Brine Interfacial Tension for Enhancement of Oil Recovery. Journal of the Japan Petroleum Institute, 2021, 64, 84-91.	0.6	4
20	Interfacial properties and salt tolerance of carboxylated nonylphenol ethoxylate surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126222.	4.7	21
21	The middle phenyl-group at the hydrophobic tails of bio-based zwitterionic surfactants induced waved monolayers and more hydrated status on the surface of water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126655.	4.7	5
22	Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms, 2021, 9, 2030.	3.6	10
23	Aminirod propionatiphilus gen. nov., sp. nov., an isolated secondary fermenter in methanogenic hydrocarbon-degrading communities. International Biodeterioration and Biodegradation, 2021, 165, 105323.	3.9	3
24	New evidence for a hydroxylation pathway for anaerobic alkane degradation supported by analyses of functional genes and signature metabolites in oil reservoirs. AMB Express, 2021, 11, 18.	3.0	10
25	Role of molecular interactions between biosurfactant surfactin and alkylbenzenesulfonate. Journal of Dispersion Science and Technology, 2020, 41, 1227-1235.	2.4	2
26	Lowâ€Toxic and Nonirritant Biosurfactant Surfactin and its Performances in Detergent Formulations. Journal of Surfactants and Detergents, 2020, 23, 109-118.	2.1	56
27	Efficient emulsifying properties of monoglycerides synthesized via simple and green route. Journal of Dispersion Science and Technology, 2020, 41, 1902-1910.	2.4	5
28	A high yield method for the direct amidation of long hain fatty acids. International Journal of Chemical Kinetics, 2020, 52, 99-108.	1.6	7
29	Functional microorganisms involved in the sulfur and nitrogen metabolism in production water from a high-temperature offshore petroleum reservoir. International Biodeterioration and Biodegradation, 2020, 154, 105057.	3.9	13
30	Energy recovery from the carbon dioxide for green and sustainable environment using iron minerals as electron donor. Journal of Cleaner Production, 2020, 277, 124134.	9.3	6
31	The recovery of viscosity of HPAM solution in presence of high concentration sulfide ions. Journal of Petroleum Science and Engineering, 2020, 195, 107605.	4.2	11
32	Bioelectrochemical methane production from CO2 by Methanosarcina barkeri via direct and H2-mediated indirect electron transfer. Energy, 2020, 210, 118445.	8.8	23
33	Simultaneous detection of transcribed functional assA gene and the corresponding metabolites of linear alkanes (C4, C5, and C7) in production water of a low-temperature oil reservoir. Science of the Total Environment, 2020, 746, 141290.	8.0	4
34	Anaerobic Degradation of Paraffins by Thermophilic Actinobacteria under Methanogenic Conditions. Environmental Science & Technology, 2020, 54, 10610-10620.	10.0	53
35	Assessment of Five Electronâ€Shuttling Molecules in the Extracellular Electron Transfer of Electromethanogenesis by using <i>Methanosarcina barkeri</i> . ChemElectroChem, 2020, 7, 3783-3789.	3.4	11
36	The optimization of heterogeneous catalytic conditions in the direct alkylation of waste vegetable oil. Royal Society Open Science, 2020, 7, 192254.	2.4	2

#	Article	IF	CITATIONS
37	Insight into the Adsorption Mechanisms of CO2, CH4, and Their Mixtures on Kerogen Type IIIA. Energy & Fuels, 2020, 34, 14300-14311.	5.1	7
38	Microbial community composition and diversity in production water of a high-temperature offshore oil reservoir assessed by DNA- and RNA-based analyses. International Biodeterioration and Biodegradation, 2020, 151, 104970.	3.9	22
39	Synthesis and Interfacial Properties of Bio-Based Zwitterionic Surfactants Derived from Different Fatty Acids in Non-Edible Vegetable Oils. Journal of Renewable Materials, 2020, 8, 417-429.	2.2	7
40	Enhanced energy generation and altered biochemical pathways in an enrichment microbial consortium amended with natural iron minerals. Renewable Energy, 2020, 159, 585-594.	8.9	5
41	A new member of the surfactin family produced by Bacillus subtilis with low toxicity on erythrocyte. Process Biochemistry, 2020, 94, 164-171.	3.7	27
42	Synthesis and mass spectra of rearrangement bio-signature metabolites of anaerobic alkane degradation via fumarate addition. Analytical Biochemistry, 2020, 600, 113746.	2.4	2
43	Genomic and Transcriptomic Evidence Supports Methane Metabolism in <i>Archaeoglobi</i> . MSystems, 2020, 5, .	3.8	33
44	Dominance of Pseudomonas in bacterial community and inhibition of fumarate addition pathway by injection of nutrients in oil reservoir revealed by functional gene and their transcript analyses. International Biodeterioration and Biodegradation, 2020, 153, 105039.	3.9	8
45	Methanogenic biodegradation of C13 and C14 n-alkanes activated by addition to fumarate. International Biodeterioration and Biodegradation, 2020, 153, 104994.	3.9	6
46	Lipid-Stabilized Double Emulsions Generated in Planar Microfluidic Devices. Langmuir, 2020, 36, 2349-2356.	3.5	19
47	A Coarse-Grained Model for Microbial Lipopeptide Surfactin and Its Application in Self-Assembly. Journal of Physical Chemistry B, 2020, 124, 1839-1846.	2.6	4
48	Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express, 2020, 10, 63.	3.0	13
49	Methanogenic biodegradation of C9 to C12n-alkanes initiated by Smithella via fumarate addition mechanism. AMB Express, 2020, 10, 23.	3.0	22
50	Enrichment and immobilization of oil-degrading microbial consortium on different sorbents for bioremediation testing under simulated aquatic and soil conditions. Applied Environmental Biotechnology, 2020, 5, 1-11.	2.4	5
51	Quantitative Determination of Trace Lipopeptide Using HPLC through Double Carboxyls Labelling. International Journal of Peptide Research and Therapeutics, 2020, 26, 2457-2464.	1.9	1
52	Insights into the hydrogen generation from water-iron rock reactions at low temperature and the key limiting factors in the process. International Journal of Hydrogen Energy, 2019, 44, 18007-18018.	7.1	11
53	A thermal-stable and salt-tolerant biobased zwitterionic surfactant with ultralow interfacial tension between crude oil and formation brine. Journal of Petroleum Science and Engineering, 2019, 181, 106181.	4.2	30
54	The newly proposed TACK and DPANN archaea detected in the production waters from a high-temperature petroleum reservoir. International Biodeterioration and Biodegradation, 2019, 143, 104729.	3.9	11

Во-Zномс Ми

#	Article	lF	CITATIONS
55	Key players in the methanogenic biodegradation of n-hexadecane identified by DNA-Stable isotope probing. International Biodeterioration and Biodegradation, 2019, 143, 104709.	3.9	11
56	Anaerobic hydrocarbon degradation in candidate phylum â€~Atribacteria' (JS1) inferred from genomics. ISME Journal, 2019, 13, 2377-2390.	9.8	63
57	Methanogenic Degradation of Long <i>n</i> -Alkanes Requires Fumarate-Dependent Activation. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
58	High microbial diversity of the nitric oxide dismutation reaction revealed by PCR amplification and analysis of the nod gene. International Biodeterioration and Biodegradation, 2019, 143, 104708.	3.9	10
59	Bioconversion Pathway of CO2 in the Presence of Ethanol by Methanogenic Enrichments from Production Water of a High-Temperature Petroleum Reservoir. Energies, 2019, 12, 918.	3.1	2
60	Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials. Bioresource Technology, 2019, 288, 121401.	9.6	40
61	Characterization of biosurfactant lipopeptide and its performance evaluation for oil-spill remediation. RSC Advances, 2019, 9, 9629-9632.	3.6	20
62	Tepidicella baoligensis sp. nov., A Novel Member of Betaproteobacterium Isolated from an Oil Reservoir. Current Microbiology, 2019, 76, 410-414.	2.2	3
63	Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China. Biogeosciences, 2019, 16, 4229-4241.	3.3	9
64	Simultaneous methanogenesis and acetogenesis from the greenhouse carbon dioxide by an enrichment culture supplemented with zero-valent iron. Renewable Energy, 2019, 132, 861-870.	8.9	32
65	Current scenario and potential of biodiesel production from waste cooking oil in Pakistan: An overview. Chinese Journal of Chemical Engineering, 2019, 27, 2238-2250.	3.5	59
66	Simulation of in situ oil reservoir conditions in a laboratory bioreactor testing for methanogenic conversion of crude oil and analysis of the microbial community. International Biodeterioration and Biodegradation, 2019, 136, 24-33.	3.9	14
67	Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Applied Microbiology and Biotechnology, 2019, 103, 2391-2401.	3.6	21
68	Anaerobic biodegradation of partially hydrolyzed polyacrylamide in long-term methanogenic enrichment cultures from production water of oil reservoirs. Biodegradation, 2018, 29, 233-243.	3.0	16
69	Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters. Energy, 2018, 147, 663-671.	8.8	27
70	Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World Journal of Microbiology and Biotechnology, 2018, 34, 34.	3.6	48
71	Microbial reduction of CO2 from injected NaH13CO3 with degradation of n-hexadecane in the enrichment culture derived from a petroleum reservoir. International Biodeterioration and Biodegradation, 2018, 127, 192-200.	3.9	12
72	Microfluidic Diffusion Platform for Characterizing the Sizes of Lipid Vesicles and the Thermodynamics of Protein–Lipid Interactions. Analytical Chemistry, 2018, 90, 3284-3290.	6.5	20

#	Article	IF	CITATIONS
73	Coralloluteibacterium thermophilus sp. nov., A Gammaproteobacterium Isolated from an Oil Reservoir. Current Microbiology, 2018, 75, 1584-1588.	2.2	1
74	Insight into the Selectivity and Mechanism of Surfactin Containing Multiple Dissociated Carboxyls with 1-Bromoacetylpyrene in Fluorescent Derivatization. Analytical Sciences, 2018, 34, 541-545.	1.6	2
75	Micellization in binary biosurfactant/synthetic surfactant systems: Effects of temperature and hydrophobic group structure of alkyl benzenesulfonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551, 174-184.	4.7	13
76	A novel binary flooding system of a biobased surfactant and hydrophobically associating polymer with ultralow interfacial tensions. RSC Advances, 2018, 8, 22986-22990.	3.6	16
77	Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs. Frontiers in Microbiology, 2018, 9, 841.	3.5	14
78	Improved transesterification of waste cooking oil into biodiesel using calcined goat bone as a catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1076-1083.	2.3	30
79	Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome, 2018, 6, 5.	11.1	70
80	Decrease in viscosity of partially hydrolyzed polyacrylamide solution caused by the interaction between sulfide ion and amide group. Journal of Petroleum Science and Engineering, 2018, 170, 738-743.	4.2	15
81	A low-temperature active endo-β-1,4-mannanase from Bacillus subtilis TD7 and its gene expression in Escherichia coli. Applied Environmental Biotechnology, 2018, 3, .	2.4	1
82	Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions. Tenside, Surfactants, Detergents, 2017, 54, 12-17.	1.2	1
83	Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach. Renewable Energy, 2017, 109, 93-100.	8.9	60
84	Insight into the shift and rearrangement of carbocation in Friedel-Crafts alkylation of unsaturated fatty acids revealed by GC–MS. International Journal of Mass Spectrometry, 2017, 415, 85-91.	1.5	6
85	Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. International Biodeterioration and Biodegradation, 2017, 120, 170-185.	3.9	63
86	Propionate metabolism and diversity of relevant functional genes by in silico analysis and detection in subsurface petroleum reservoirs. World Journal of Microbiology and Biotechnology, 2017, 33, 182.	3.6	6
87	Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir. Applied Microbiology and Biotechnology, 2017, 101, 7053-7063.	3.6	16
88	Type II chaperonin gene as a complementary barcode for 16S rRNA gene in study of Archaea diversity of petroleum reservoirs. International Biodeterioration and Biodegradation, 2017, 123, 113-120.	3.9	8
89	Mechanism of biosurfactant adsorption to oil/water interfaces from millisecond scale tensiometry measurements. Interface Focus, 2017, 7, 20170013.	3.0	15
90	Migration Behavior of Lithium during Brine Evaporation and KCl Production Plants in Qarhan Salt Lake. Minerals (Basel, Switzerland), 2017, 7, 57.	2.0	9

#	Article	IF	CITATIONS
91	Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir. Frontiers in Microbiology, 2017, 8, 1011.	3.5	63
92	Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir. Frontiers in Microbiology, 2017, 8, 2379.	3.5	48
93	Expanding the Diet for DIET: Electron Donors Supporting Direct Interspecies Electron Transfer (DIET) in Defined Co-Cultures. Frontiers in Microbiology, 2016, 7, 236.	3.5	56
94	Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of Methanogenesis in Production Water of High-temperature Oil Reservoirs Amended with Bicarbonate. Frontiers in Microbiology, 2016, 7, 365.	3.5	19
95	High Frequency of Thermodesulfovibrio spp. and Anaerolineaceae in Association with Methanoculleus spp. in a Long-Term Incubation of n-Alkanes-Degrading Methanogenic Enrichment Culture. Frontiers in Microbiology, 2016, 7, 1431.	3.5	95
96	Structural Analysis of the Lipopeptide Produced by the Bacillus subtilis Mutant R2-104 with Mutagenesis. Applied Biochemistry and Biotechnology, 2016, 179, 973-985.	2.9	11
97	Synthesis and Characterization of Anaerobic Degradation Biomarkers of n-Alkanes via Hydroxylation/Carboxylation Pathways. European Journal of Mass Spectrometry, 2016, 22, 31-37.	1.0	7
98	Microbial communities responsible for fixation of CO2 revealed by using mcrA, cbbM, cbbL, fthfs, fefe-hydrogenase genes as molecular biomarkers in petroleum reservoirs of different temperatures. International Biodeterioration and Biodegradation, 2016, 114, 164-175.	3.9	14
99	Activation of CO2-reducing methanogens in oil reservoir after addition of nutrient. Journal of Bioscience and Bioengineering, 2016, 122, 740-747.	2.2	12
100	Molecular diversity of bacterial bamA gene involved in anaerobic degradation of aromatic hydrocarbons in mesophilic petroleum reservoirs. International Biodeterioration and Biodegradation, 2016, 114, 122-128.	3.9	36
101	Diversity and abundance of ammonia-oxidizing bacteria (AOB) revealed by PCR amplification of amoA gene in a polyacrylamide transportation system of an oilfield. International Biodeterioration and Biodegradation, 2016, 115, 110-118.	3.9	3
102	Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution. Journal of Colloid and Interface Science, 2016, 481, 201-209.	9.4	29
103	Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. International Biodeterioration and Biodegradation, 2016, 114, 45-56.	3.9	59
104	Molecular cloning and expression of a new αâ€neoagarobiose hydrolase from <i>Agarivorans gilvus</i> WH0801 and enzymatic production of 3,6â€anhydroâ€ <scp>l</scp> â€galactose. Biotechnology and Applied Biochemistry, 2016, 63, 230-237.	3.1	19
105	Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing. Applied Microbiology and Biotechnology, 2016, 100, 1469-1478.	3.6	48
106	Selective inhibition of methanogenesis by sulfate in enrichment culture with production water from low-temperature oil reservoir. International Biodeterioration and Biodegradation, 2016, 108, 133-141.	3.9	17
107	The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield. Journal of Hazardous Materials, 2016, 304, 388-399.	12.4	45
108	Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18. Journal of Bioscience and Bioengineering, 2016, 121, 140-146.	2.2	24

#	Article	IF	CITATIONS
109	A thermophilic nitrate-reducing bacterium isolated from production water of a high temperature oil reservoir and its inhibition on sulfate-reducing bacteria. Applied Environmental Biotechnology, 2016, 1, 35.	2.4	6
110	The diversity of hydrogen-producing microorganisms in a high temperature oil reservoir and its potential role in promoting the in situ bioprocess. Applied Environmental Biotechnology, 2016, 1, 25.	2.4	4
111	Synthesis and Properties of a Novel Bio-Based Branched Heptadecylbenzene Sulfonate Derived from Oleic Acid. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 2753-2760.	4.9	2
112	Quantification of Lipopeptides Using High-performance Liquid Chromatography with Fluorescence Detection after Derivatization. Analytical Sciences, 2015, 31, 377-382.	1.6	6
113	The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants. Scientific Reports, 2015, 5, 9971.	3.3	30
114	Non-destructive characterization using MCT reveals the composition and distribution of impurities in solar carnallite. RSC Advances, 2015, 5, 16230-16233.	3.6	2
115	Structural characterization of lipopeptides from <i>Enterobacter</i> sp. strain N18 reveals production of surfactin homologues. European Journal of Lipid Science and Technology, 2015, 117, 890-898.	1.5	25
116	Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites. Scientific Reports, 2015, 5, 9801.	3.3	78
117	The Composition and Interfacial Activity of Alkyl Benzene Sulfonates Used in Oil Recovery. Petroleum Science and Technology, 2015, 33, 287-293.	1.5	5
118	Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: A molecular dynamics simulation study. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1955-1962.	2.6	12
119	Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express, 2015, 5, 117.	3.0	244
120	Significant enhancement of Pseudomonas aeruginosa FW_SH-1 lipase production using response surface methodology and analysis of its hydrolysis capability. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52, 7-13.	5.3	14
121	Synthesis of 2-[2H]-2-(1-methylalkyl)succinic acids. Chinese Chemical Letters, 2015, 26, 619-622.	9.0	3
122	Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration. Frontiers in Microbiology, 2015, 6, 236.	3.5	34
123	Novel zwitterionic surfactant derived from castor oil and its performance evaluation for oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 87-95.	4.7	78
124	Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation. International Journal of Molecular Sciences, 2015, 16, 4814-4837.	4.1	119
125	Analysis of Bacterial and Archaeal Communities along a High-Molecular-Weight Polyacrylamide Transportation Pipeline System in an Oil Field. International Journal of Molecular Sciences, 2015, 16, 7445-7461.	4.1	15
126	Structural Diversity of the Microbial Surfactin Derivatives from Selective Esterification Approach. International Journal of Molecular Sciences, 2015, 16, 1855-1872.	4.1	24

#	Article	IF	CITATIONS
127	Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate. Applied Microbiology and Biotechnology, 2015, 99, 7757-7769.	3.6	12
128	Role of reactive oxygen species in the dechlorination of trichloroethene and 1.1.1-trichloroethane in aqueous phase in UV/TiO 2 systems. Chemical Engineering Science, 2015, 123, 367-375.	3.8	21
129	Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Applied Microbiology and Biotechnology, 2014, 98, 4209-4221.	3.6	79
130	Gene cloning, expression and characterisation of a new β-agarase, AgWH50C, producing neoagarobiose from Agarivorans gilvus WH0801. World Journal of Microbiology and Biotechnology, 2014, 30, 1691-1698.	3.6	30
131	Structural characterization of rhamnolipid produced by Pseudonomas aeruginosa strain FIN2 isolated from oil reservoir water. World Journal of Microbiology and Biotechnology, 2014, 30, 1473-1484.	3.6	14
132	Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Applied Microbiology and Biotechnology, 2014, 98, 1871-1882.	3.6	45
133	Cloning and characterisation of a novel neoagarotetraose-forming-β-agarase, AgWH50A from Agarivorans gilvus WH0801. Carbohydrate Research, 2014, 388, 147-151.	2.3	36
134	Interaction Between Surfactin and Bovine Serum Albumin. Journal of Dispersion Science and Technology, 2014, 35, 48-55.	2.4	4
135	Interaction between biosurfactant surfactin and cationic surfactant cetyl trimethyl ammonium bromide in mixed micelle. Colloid and Polymer Science, 2014, 292, 3169-3176.	2.1	17
136	A family of novel bio-based zwitterionic surfactants derived from oleic acid. RSC Advances, 2014, 4, 38393.	3.6	44
137	Insights into the Interactions among Surfactin, Betaines, and PAM: Surface Tension, Small-Angle Neutron Scattering, and Small-Angle X-ray Scattering Study. Langmuir, 2014, 30, 3363-3372.	3.5	19
138	Synthesis of Anaerobic Degradation Biomarkers Alkyl-, Aryl- and Cycloalkylsuccinic Acids and Their Mass Spectral Characteristics. European Journal of Mass Spectrometry, 2014, 20, 287-297.	1.0	14
139	Optimization of Surfactin Production by Bacillus subtilis HSO121 through Plackett-Burman and Response Surface Method. Protein and Peptide Letters, 2014, 21, 885-893.	0.9	12
140	Interaction of the Biosurfactant, Surfactin with Betaines in Aqueous Solution. Langmuir, 2013, 29, 10648-10657.	3.5	21
141	Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes. International Biodeterioration and Biodegradation, 2013, 76, 58-66.	3.9	79
142	Evaluation of microbial community composition in thermophilic methane-producing incubation of production water from a high-temperature oil reservoir. Environmental Technology (United) Tj ETQq0 0 0 rgBT /C	væløck 1() Tf350 137 To
143	The effect of polymer–surfactant emulsifying agent on the formation and stability of α-lipoic acid loaded nanostructured lipid carriers (NLC). Food Hydrocolloids, 2013, 32, 72-78.	10.7	36

Kinetic Modeling of Esterification Reaction of Surfactin-C15 in Methanol Solution. Applied Biochemistry and Biotechnology, 2013, 169, 327-337.

2.9 3

#	Article	IF	CITATIONS
145	Molecular detection, quantification and distribution of alkane-degrading bacteria in production water from low temperature oilfields. International Biodeterioration and Biodegradation, 2013, 76, 49-57.	3.9	36
146	Kinetic Study of Hydrogen-Deuterium Exchange of Glutamic Acid in Deuterated Hydrochloric Acid Solution. International Journal of Chemical Kinetics, 2013, 45, 243-247.	1.6	1
147	Characterization and evaluation of an oral microemulsion containing the antitumor diterpenoid compound ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid. International Journal of Nanomedicine, 2013, 8, 1879.	6.7	9
148	Quantitative Analyses of the Isoforms of Surfactin Produced by Bacillus subtilis HSO 121 Using GC-MS. Analytical Sciences, 2012, 28, 789-793.	1.6	24
149	Temperature Influence on the Structure and Interfacial Properties of Surfactin Micelle: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2012, 116, 12735-12743.	2.6	20
150	Nanoscale Interfacial Activity of the Natural Lipopeptide, [Asp ₁ , Glu ₅] Surfactin 16, and DMPC in Mixed Monolayer. Chinese Journal of Chemistry, 2012, 30, 2869-2873.	4.9	0
151	Methanogenic Microbial Community Composition of Oily Sludge and Its Enrichment Amended with Alkanes Incubated for Over 500 Days. Geomicrobiology Journal, 2012, 29, 716-726.	2.0	27
152	Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques. Ecotoxicology, 2012, 21, 1680-1691.	2.4	67
153	Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences, 2012, 9, 4645-4659.	3.3	59
154	A twoâ€step synthesis of deuterium labeled 8, 8, 9, 9â€ <i>d</i> ₄ â€hexadecane from nonanoic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 158-160.	1.0	4
155	Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir. Applied Microbiology and Biotechnology, 2012, 96, 531-542.	3.6	102
156	Effects of 1,1,1-trichloroethane on enzymatic activity and bacterial community in anaerobic microcosm form sequencing batch reactors. Ecotoxicology, 2012, 21, 1426-1435.	2.4	2
157	Effects of Different Amino Acids in Culture Media on Surfactin Variants Produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology, 2012, 166, 2091-2100.	2.9	45
158	Microbial community characteristics of petroleum reservoir production water amended with n-alkanes and incubated under nitrate-, sulfate-reducing and methanogenic conditions. International Biodeterioration and Biodegradation, 2012, 69, 87-96.	3.9	47
159	Molecular Dynamics Study of Surfactin Monolayer at the Air/Water Interface. Journal of Physical Chemistry B, 2011, 115, 12770-12777.	2.6	25
160	Theoretical Analyzing of Monomers Adsorbing in Nano-Slits. Journal of Nanoscience and Nanotechnology, 2011, 11, 11156-11161.	0.9	0
161	Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene (napA). International Biodeterioration and Biodegradation, 2011, 65, 1081-1086.	3.9	38
162	Microbial communities involved in anaerobic degradation of alkanes. International Biodeterioration and Biodeterioration, 2011, 65, 1-13.	3.9	175

Во-Zномс Ми

#	Article	IF	CITATIONS
163	Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. International Biodeterioration and Biodegradation, 2011, 65, 444-450.	3.9	93
164	Production Processes Affected Prokaryotic <i>amoA</i> Gene Abundance and Distribution in High-Temperature Petroleum Reservoirs. Geomicrobiology Journal, 2011, 28, 692-704.	2.0	42
165	Effects of Molecular Structure on Surfactin Micellization Activity. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 1128-1134.	4.9	9
166	Hysteresis Behavior of Surfactin Monolayer at the Air/Water Interface. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 2217-2221.	4.9	0
167	Molecular Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in High-Temperature Petroleum Reservoirs. Microbial Ecology, 2010, 60, 771-783.	2.8	131
168	Effect of themicrobial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. Protein and Cell, 2010, 1, 584-594.	11.0	53
169	Structural Characterization of Lipopeptides from Brevibacillus brevis HOB1. Applied Biochemistry and Biotechnology, 2010, 160, 812-821.	2.9	24
170	Structural Characterization of Lipopeptide Methyl Esters Produced by <i>Bacillus licheniformis</i> HSN 221. Chemistry and Biodiversity, 2010, 7, 2065-2075.	2.1	10
171	Surfactin effect on the physicochemical property of PC liposome. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 90-95.	4.7	14
172	Interaction between the natural lipopeptide [Glu1, Asp5] surfactin-C15 and hemoglobin: A spectroscopic and electrochemical investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369, 154-159.	4.7	7
173	Toluidine blue: Aggregation properties and distribution behavior in surfactin micelle solution. Colloids and Surfaces B: Biointerfaces, 2010, 75, 496-500.	5.0	29
174	The Surfactin and Lichenysin Isoforms Produced by <i>Bacillus licheniformis</i> HSN 221. Analytical Letters, 2010, 43, 929-940.	1.8	17
175	Theoretical analyzing of monomers adsorbing in nano-slits. , 2010, , .		0
176	Interfacial Behavior of Surfactin at the Decane/Water Interface: A Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2010, 114, 14947-14954.	2.6	23
177	Molecular Dynamics Simulation of Surfactin Derivatives at the Decane/Water Interface at Low Surface Coverage. Journal of Physical Chemistry B, 2010, 114, 2728-2737.	2.6	22
178	Interaction between the Natural Lipopeptide [Glu ₁ , Asp ₅] Surfactin-C15 and Hemoglobin in Aqueous Solution. Biomacromolecules, 2010, 11, 593-599.	5.4	26
179	Micellization Activity of the Natural Lipopeptide [Glu ₁ , Asp ₅] Surfactin-C15 in Aqueous Solution. Journal of Physical Chemistry B, 2010, 114, 2712-2718.	2.6	48
180	Influence of Sodium Ions on Micelles of Surfactin ₁₆ in Solution. Journal of Surfactants and Detergents, 2009, 12, 31-36.	2.1	13

#	Article	IF	CITATIONS
181	Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121. Process Biochemistry, 2009, 44, 1144-1151.	3.7	59
182	Counterion-Induced Changes to the Micellization of Surfactin-C ₁₆ Aqueous Solution. Journal of Physical Chemistry B, 2009, 113, 15272-15277.	2.6	39
183	Identification of a Biosurfactant Producing Strain: Bacillus subtilis HOB2. Protein and Peptide Letters, 2009, 16, 7-13.	0.9	34
184	Modeling of microorganisms transport in a cylindrical pore. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 495-500.	3.0	2
185	Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1597-1604.	3.0	55
186	Isolation and characterization of a C ₁₂ â€lipopeptide produced by <i>Bacillus subtilis</i> HSO 121. Journal of Peptide Science, 2008, 14, 864-875.	1.4	65
187	The McLafferty rearrangement in the Glu residue in a cyclic lipopeptide determined by Qâ€ŦOF MS/MS. Journal of Mass Spectrometry, 2008, 43, 1673-1678.	1.6	14
188	Aggregation behavior and surface morphology studies of surfactin in Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330, 49-54.	4.7	8
189	Variants of Lipopeptides Produced by Bacillus licheniformis HSN221 in Different Medium Components Evaluated by a Rapid Method ESI-MS. International Journal of Peptide Research and Therapeutics, 2008, 14, 229-235.	1.9	57
190	Surfactin Isoforms from Bacillus subtilis HSO121: Separation and Characterization. Protein and Peptide Letters, 2008, 15, 265-269.	0.9	51
191	Structural Characterization of Eight Cyclic Lipopeptides Produced By Bacillus subtilis HSO121. Protein and Peptide Letters, 2007, 14, 766-773.	0.9	34
192	Molecular behavior of a microbial lipopeptide monolayer at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 82-87.	4.7	27
193	Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiology Ecology, 2007, 60, 74-84.	2.7	120
194	Determination of the structure of the fatty acid chain in a cyclic lipopeptide using GC–MS. Journal of Proteomics, 2007, 70, 519-523.	2.4	28
195	Phylogenetic Diversity of the Archaeal Community in a Continental High-Temperature, Water-Flooded Petroleum Reservoir. Current Microbiology, 2007, 55, 382-388.	2.2	37
196	Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiology Letters, 2006, 257, 92-98.	1.8	74
197	Determination of the amino acid sequence in a cyclic lipopeptide using MS with DHT mechanism. Journal of Proteomics, 2006, 68, 69-74.	2.4	61
198	Characterization of Microbial Transport in Cylindrical Pores. Chinese Journal of Chemical Engineering, 2006, 14, 819-824.	3.5	2

Во-Zномс Ми

#	Article	IF	CITATIONS
199	Hysteresis Loops Predictions by Revised LDFT in Slits. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2006, 22, 355-358.	4.9	0
200	Study on color control system of digital photofinishing. , 2005, , .		0
201	The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. Journal of Petroleum Science and Engineering, 2005, 48, 265-271.	4.2	87
202	Critical adsorbing properties in slits predicted by traditional polymer adsorption theories on Ising lattice. Science Bulletin, 2005, 50, 1691.	1.7	1
203	Adsorption Behavior of Polydisperse Polymeric Systems. Molecular Simulation, 2004, 30, 313-321.	2.0	2
204	Application of the Revised Lattice Density Functional Theory in Slits. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 668-672.	4.9	2
205	Behavior of macromolecules in adsorbed layers. Science in China Series B: Chemistry, 2000, 43, 496-502.	0.8	0
206	Performance and optimization of biological and chemical composite flooding system for enhanced oil recovery. Petroleum Science and Technology, 0, , 1-16.	1.5	0