Venkata Srinivas Vemavarapu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6971602/publications.pdf

Version: 2024-02-01

53 papers 2,090 citations

20 h-index 233421 45 g-index

56 all docs 56
docs citations

56 times ranked 1691 citing authors

#	Article	IF	Citations
1	Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, 2006, 330, 621-640.	5.4	481
2	Regionalization of watersheds by fuzzy cluster analysis. Journal of Hydrology, 2006, 318, 57-79.	5.4	211
3	Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology, 2008, 28, 401-420.	3.5	206
4	Regionalization of watersheds by hybrid-cluster analysis. Journal of Hydrology, 2006, 318, 37-56.	5.4	172
5	Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering. Journal of Hydrology, 2008, 348, 148-166.	5.4	127
6	Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology, 2009, 29, 583-603.	3.5	101
7	Hybrid moving block bootstrap for stochastic simulation of multi-site multi-season streamflows. Journal of Hydrology, 2005, 302, 307-330.	5.4	67
8	Regional frequency analysis of precipitation using largeâ€scale atmospheric variables. Journal of Geophysical Research, 2008, 113, .	3.3	66
9	Regionalization of precipitation in data sparse areas using large scale atmospheric variables – A fuzzy clustering approach. Journal of Hydrology, 2011, 405, 462-473.	5.4	54
10	Regional flood frequency analysis using kernelâ€based fuzzy clustering approach. Water Resources Research, 2014, 50, 3295-3316.	4.2	45
11	Bivariate frequency analysis of floods using a diffusion based kernel density estimator. Water Resources Research, 2013, 49, 8328-8343.	4.2	40
12	Post-blackening approach for modeling dependent annual streamflows. Journal of Hydrology, 2000, 230, 86-126.	5.4	39
13	Evaluating Methods to Predict Streamflow at Ungauged Sites Using Regional Flow Duration Curves: A Case Study. Aquatic Procedia, 2015, 4, 641-648.	0.9	31
14	Hybrid matched-block bootstrap for stochastic simulation of multiseason streamflows. Journal of Hydrology, 2006, 329, 1-15.	5.4	30
15	Post-blackening approach for modeling periodic streamflows. Journal of Hydrology, 2001, 241, 221-269.	5.4	24
16	Delineation of homogeneous hydrometeorological regions using waveletâ€based global fuzzy cluster analysis. International Journal of Climatology, 2015, 35, 4707-4727.	3.5	24
17	A hybrid stochastic model for multiseason streamflow simulation. Water Resources Research, 2001, 37, 2537-2549.	4.2	23
18	Matched block bootstrap for resampling multiseason hydrologic time series. Hydrological Processes, 2005, 19, 3659-3682.	2.6	23

#	Article	IF	Citations
19	A nonlinear dataâ€driven model for synthetic generation of annual streamflows. Hydrological Processes, 2008, 22, 1831-1845.	2.6	22
20	Formulation of a mathematical approach to regional frequency analysis. Water Resources Research, 2013, 49, 6810-6833.	4.2	22
21	Probable Maximum Precipitation Estimation for Catchments in Mahanadi River Basin. Aquatic Procedia, 2015, 4, 892-899.	0.9	22
22	Regionalization of extreme rainfall in India. International Journal of Climatology, 2015, 35, 1142-1156.	3.5	21
23	Analytical approach to quantile estimation in regional frequency analysis based on fuzzy framework. Journal of Hydrology, 2015, 524, 30-43.	5.4	19
24	Effect of DEM source on equivalent Horton–Strahler ratio based GIUH for catchments in two Indian river basins. Journal of Hydrology, 2015, 528, 463-489.	5.4	19
25	Characteristics of the monsoon low pressure systems in the Indian subcontinent and the associated extreme precipitation events. Climate Dynamics, 2021, 56, 1859-1878.	3.8	18
26	Multiâ€site downscaling of maximum and minimum daily temperature using support vector machine. International Journal of Climatology, 2014, 34, 1538-1560.	3.5	17
27	A recursive multi-scaling approach to regional flood frequency analysis. Journal of Hydrology, 2015, 529, 373-383.	5.4	16
28	A fuzzy entropy approach for design of hydrometric monitoring networks. Journal of Hydrology, 2020, 586, 124797.	5.4	16
29	Regional Flood Frequency Analysis Using Entropy-Based Clustering Approach. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	1.9	14
30	Regionalization based envelope curves for <scp>PMP</scp> estimation by Hershfield method. International Journal of Climatology, 2017, 37, 3767-3779.	3.5	11
31	Reliability Assessment of a Storm Water Drain Network. Aquatic Procedia, 2015, 4, 772-779.	0.9	10
32	Delineation of homogeneous temperature regions: a two-stage clustering approach. International Journal of Climatology, 2016, 36, 165-187.	3.5	10
33	A Mahalanobis Distanceâ€Based Automatic Threshold Selection Method for Peaks Over Threshold Model. Water Resources Research, 2021, 57, .	4.2	10
34	Daily relative humidity projections in an Indian river basin for IPCC SRES scenarios. Theoretical and Applied Climatology, 2012, 108, 85-104.	2.8	9
35	Evaluation of the Index-Flood Approach Related Regional Frequency Analysis Procedures. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	1.9	9
36	A fuzzy approach to reliability based design of storm water drain network. Stochastic Environmental Research and Risk Assessment, 2017, 31, 1091-1106.	4.0	7

#	Article	IF	CITATIONS
37	Regionalization of evapotranspiration using fuzzy dynamic clustering approach. Part 1: Formation of regions in India. International Journal of Climatology, 2020, 40, 3514-3530.	3.5	7
38	A Bayesian Fuzzy Clustering Approach for Design of Precipitation Gauge Network Using Merged Remote Sensing and Groundâ€Based Precipitation Products. Water Resources Research, 2022, 58, .	4.2	7
39	Climate change scenarios of surface solar radiation in data sparse regions: a case study in Malaprabha River Basin, India. Climate Research, 2014, 59, 259-270.	1.1	6
40	Fuzzy Ensemble Clustering Approach to Address Regionalization Uncertainties in Flood Frequency Analysis. Water Resources Research, 2021, 57, e2020WR028412.	4.2	6
41	Support Vector Machine Approach to Downscale Precipitation in Climate Change Scenarios. , 2006, , $1.$		4
42	REGIONALIZATION OF WATERSHEDS USING SOFT COMPUTING TECHNIQUES. ISH Journal of Hydraulic Engineering, 2009, 15, 170-193.	2.1	4
43	Impact of Climate Change on Hydrometeorological Variables in a River Basin in India for IPCC SRES Scenarios. , 2013, , 327-356.		4
44	Use of Data Driven Techniques for Short Lead Time Streamflow Forecasting in Mahanadi Basin. Aquatic Procedia, 2015, 4, 972-978.	0.9	4
45	Regionalization of evapotranspiration in India using fuzzy dynamic clustering approach. Part 2: Applications of regions. International Journal of Climatology, 2021, 41, E1371.	3.5	4
46	Evaluation of three approaches to probable maximum precipitation estimation: a study on two Indian river basins. Theoretical and Applied Climatology, 2021, 144, 731-749.	2.8	4
47	Discussion of "Regional Flood Frequency Analysis Using L-Moments for North Brahmaputra Region of Indiaâ€-by Rakesh Kumar and Chandranath Chatterjee. Journal of Hydrologic Engineering - ASCE, 2006, 11, 379-380.	1.9	2
48	Distributional Regression Forests Approach to Regional Frequency Analysis with Partial Duration Series. Water Resources Research, 2021, 57, e2021WR029909.	4.2	1
49	Multivariate Regional Frequency Analysis Using Conditional Extreme Values Approach. Water Resources Research, 2022, 58, .	4.2	1
50	Regional Flood Frequency Analysis Using Two-Level Clustering Approach., 2007,, 1.		0
51	On Selection of Features for Regional Hydrologic Studies. , 2008, , .		0
52	A Relook at Ohio Watershed Regions for Homogeneity in Flood Frequency Analysis. , 2013, , .		0
53	Design Flood Estimation Using Scaling Approach. , 2013, , .		0