
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6970997/publications.pdf Version: 2024-02-01

SHAO FENC

#	Article	IF	CITATIONS
1	Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526, 660-665.	27.8	4,072
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
3	Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends in Biochemical Sciences, 2017, 42, 245-254.	7.5	1,911
4	Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535, 111-116.	27.8	1,812
5	Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547, 99-103.	27.8	1,793
6	Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514, 187-192.	27.8	1,665
7	The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature, 2011, 477, 596-600.	27.8	1,050
8	The gasdermins, a protein family executing cell death and inflammation. Nature Reviews Immunology, 2020, 20, 143-157.	22.7	881
9	Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368, .	12.6	716
10	Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature, 2014, 513, 237-241.	27.8	664
11	A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature, 2020, 579, 421-426.	27.8	587
12	Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during <i>Yersinia</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10888-E10897.	7.1	541
13	Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector. Science, 2003, 301, 1230-1233.	12.6	504
14	An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science, 2016, 352, 1232-1236.	12.6	419
15	A Yersinia Effector and a Pseudomonas Avirulence Protein Define a Family of Cysteine Proteases Functioning in Bacterial Pathogenesis. Cell, 2002, 109, 575-588.	28.9	417
16	Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell, 2020, 180, 941-955.e20.	28.9	382
17	The Phosphothreonine Lyase Activity of a Bacterial Type III Effector Family. Science, 2007, 315, 1000-1003.	12.6	378
18	Innate immunity to intracellular LPS. Nature Immunology, 2019, 20, 527-533.	14.5	342

#	Article	IF	CITATIONS
19	Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14408-14413.	7.1	333
20	Structural and biochemical basis for induced self-propagation of NLRC4. Science, 2015, 350, 399-404.	12.6	282
21	Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. Journal of Hepatology, 2018, 68, 773-782.	3.7	276
22	N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nature Communications, 2020, 11, 2212.	12.8	270
23	Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature, 2013, 501, 242-246.	27.8	247
24	Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity, 2019, 50, 1401-1411.e4.	14.3	246
25	Cullin Mediates Degradation of RhoA through Evolutionarily Conserved BTB Adaptors to Control Actin Cytoskeleton Structure and Cell Movement. Molecular Cell, 2009, 35, 841-855.	9.7	245
26	A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy. Cell, 2019, 178, 552-566.e20.	28.9	212
27	Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Current Opinion in Immunology, 2015, 32, 78-83.	5.5	210
28	Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses. Cell, 2012, 150, 1029-1041.	28.9	198
29	Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4857-66.	7.1	198
30	Glutamine Deamidation and Dysfunction of Ubiquitin/NEDD8 Induced by a Bacterial Effector Family. Science, 2010, 329, 1215-1218.	12.6	176
31	The <scp>NAIP</scp> – <scp>NLRC</scp> 4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunological Reviews, 2015, 265, 85-102.	6.0	173
32	Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature, 2012, 481, 204-208.	27.8	167
33	Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature, 2018, 561, 122-126.	27.8	165
34	Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature, 2017, 551, 378-383.	27.8	158
35	Biochemical characterization of the Yersinia YopT protease: Cleavage site and recognition elements in Rho CTPases. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 904-909.	7.1	155
36	Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nature Structural and Molecular Biology, 2008, 15, 1302-1308.	8.2	154

#	Article	IF	CITATIONS
37	A <i>Legionella</i> type IV effector activates the NF-κB pathway by phosphorylating the lκB family of inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13725-13730.	7.1	142
38	A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host and Microbe, 2016, 19, 664-674.	11.0	140
39	Structural Insights into the Enzymatic Mechanism of the Pathogenic MAPK Phosphothreonine Lyase. Molecular Cell, 2007, 28, 899-913.	9.7	114
40	The crystal structure of Pseudomonas avirulence protein AvrPphB: A papain-like fold with a distinct substrate-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 302-307.	7.1	113
41	Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a <i>Legionella</i> effector functioning in membrane trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6193-6198.	7.1	109
42	Sweet Talk: Protein Glycosylation in Bacterial Interaction With the Host. Trends in Microbiology, 2015, 23, 630-641.	7.7	93
43	Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature, 2021, 599, 290-295.	27.8	93
44	Chemical probing reveals insights into the signaling mechanism of inflammasome activation. Cell Research, 2010, 20, 1289-1305.	12.0	91
45	VipD of Legionella pneumophila Targets Activated Rab5 and Rab22 to Interfere with Endosomal Trafficking in Macrophages. PLoS Pathogens, 2012, 8, e1003082.	4.7	89
46	Structural mechanism of host Rab1 activation by the bifunctional <i>Legionella</i> type IV effector SidM/DrrA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4699-4704.	7.1	86
47	Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice. Journal of Experimental Medicine, 2016, 213, 647-656.	8.5	81
48	The Nâ€end rule ubiquitin ligase UBR2 mediates NLRP1B inflammasome activation by anthrax lethal toxin. EMBO Journal, 2019, 38, e101996.	7.8	78
49	SETâ€domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Reports, 2013, 14, 733-740.	4.5	75
50	Nε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function. Nature Microbiology, 2018, 3, 996-1009.	13.3	65
51	A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3716-3721.	7.1	61
52	Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cellular Microbiology, 2011, 13, 1870-1880.	2.1	60
53	Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nature Microbiology, 2017, 2, 16236.	13.3	60
54	Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Current Opinion in Microbiology, 2016, 29, 37-42.	5.1	54

#	Article	IF	CITATIONS
55	Inflammatory Caspases: Activation and Cleavage of Gasdermin-D In Vitro and During Pyroptosis. Methods in Molecular Biology, 2018, 1714, 131-148.	0.9	51
56	Biochemical functions of Yersinia type III effectors. Current Opinion in Microbiology, 2008, 11, 21-29.	5.1	50
57	Synthesis of and Specific Antibody Generation for Glycopeptides with Arginine <i>N</i> â€GlcNAcylation. Angewandte Chemie - International Edition, 2014, 53, 14517-14521.	13.8	49
58	An Iron-Containing Dodecameric Heptosyltransferase Family Modifies Bacterial Autotransporters in Pathogenesis. Cell Host and Microbe, 2014, 16, 351-363.	11.0	47
59	Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nature Communications, 2019, 10, 3911.	12.8	45
60	H7N9 virus infection triggers lethal cytokine storm by activating gasdermin E-mediated pyroptosis of lung alveolar epithelial cells. National Science Review, 2022, 9, nwab137.	9.5	45
61	Gasdermins: making pores for pyroptosis. Nature Reviews Immunology, 2021, 21, 620-621.	22.7	45
62	Structural and Functional Insights into Host Death Domains Inactivation by the Bacterial Arginine GlcNAcyltransferase Effector. Molecular Cell, 2019, 74, 922-935.e6.	9.7	43
63	The Shigella Type Three Secretion System Effector OspG Directly and Specifically Binds to Host Ubiquitin for Activation. PLoS ONE, 2013, 8, e57558.	2.5	43
64	Structural basis of the ultrasensitive calcium indicator GCaMP6. Science China Life Sciences, 2014, 57, 269-274.	4.9	42
65	N ^ε -Fatty acylation of Rho GTPases by a MARTX toxin effector. Science, 2017, 358, 528-531.	12.6	42
66	Biochemistry and cell signaling taught by bacterial effectors. Trends in Biochemical Sciences, 2011, 36, 532-540.	7.5	41
67	Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20395-20400.	7.1	41
68	Structural mechanism for guanylate-binding proteins (GBPs) targeting by the Shigella E3 ligase IpaH9.8. PLoS Pathogens, 2019, 15, e1007876.	4.7	39
69	Metabolic intermediate acetyl phosphate modulates bacterial virulence <i>via</i> acetylation. Emerging Microbes and Infections, 2019, 8, 55-69.	6.5	37
70	Bacterial detection by NAIP/NLRC4 elicits prompt contractions of intestinal epithelial cell layers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
71	Chemoselective and Diastereoselective Synthesis of <i>C</i> â€Aryl Nucleoside Analogues by Nickelâ€Catalyzed Crossâ€Coupling of Furanosyl Acetates with Aryl Iodides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
72	Sensing bacterial infections by NAIP receptors in NLRC4 inflammasome activation. Protein and Cell, 2012, 3, 98-105.	11.0	30

#	Article	IF	CITATIONS
73	A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family. ELife, 2014, 3, .	6.0	30
74	The immunological function of familial Mediterranean fever disease protein Pyrin. Science China Life Sciences, 2014, 57, 1156-1161.	4.9	29
75	ARF GTPases activate Salmonella effector SopF to ADP-ribosylate host V-ATPase and inhibit endomembrane damage-induced autophagy. Nature Structural and Molecular Biology, 2022, 29, 67-77.	8.2	29
76	IL-22–induced cell extrusion and IL-18–induced cell death prevent and cure rotavirus infection. Science Immunology, 2020, 5, .	11.9	27
77	Arginine GlcNAcylation of Rab small GTPases by the pathogen Salmonella Typhimurium. Communications Biology, 2020, 3, 287.	4.4	27
78	Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP. Cell Research, 2013, 23, 775-787.	12.0	26
79	Structure and Specificity of the Bacterial Cysteine Methyltransferase Effector NleE Suggests a Novel Substrate in Human DNA Repair Pathway. PLoS Pathogens, 2014, 10, e1004522.	4.7	24
80	Epithelial cells detect functional type III secretion system of enteropathogenic Escherichia coli through a novel NF-κB signaling pathway. PLoS Pathogens, 2017, 13, e1006472.	4.7	22
81	Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nature Chemical Biology, 2019, 15, 213-216.	8.0	21
82	A polar-localized iron-binding protein determines the polar targeting ofBurkholderiaâ€BimA autotransporter and actin tail formation. Cellular Microbiology, 2015, 17, 408-424.	2.1	20
83	Sequence determinants of specific pattern-recognition of bacterial ligands by the NAIP–NLRC4 inflammasome. Cell Discovery, 2018, 4, 22.	6.7	18
84	NINJ1, rupturing swollen membranes for cataclysmic cell lysis. Molecular Cell, 2021, 81, 1370-1371.	9.7	18
85	Synthetic glycan-based TLR4 agonists targeting caspase-4/11 for the development of adjuvants and immunotherapeutics. Chemical Science, 2018, 9, 3957-3963.	7.4	17
86	Growing a gasdermin pore in membranes of pyroptotic cells. EMBO Journal, 2018, 37, .	7.8	15
87	Molecular mechanisms and functions of pyroptosis. Journal of Molecular Biology, 2022, 434, 167461.	4.2	14
88	The <i>Yersinia</i> Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annual Review of Microbiology, 2020, 74, 221-245.	7.3	13
89	A New Application of Multimodality Radiomics Improves Diagnostic Accuracy of Nonpalpable Breast Lesions in Patients with Microcalcifications-Only in Mammography. Medical Science Monitor, 2019, 25, 9786-9793.	1.1	13
90	Calmodulin Binding Activates <i>Chromobacterium</i> CopC Effector to ADP-Riboxanate Host Apoptotic Caspases. MBio, 2022, 13, e0069022.	4.1	12

#	Article	IF	CITATIONS
91	Mechanisms and Consequences of Inflammasome Activation. Journal of Molecular Biology, 2018, 430, 131-132.	4.2	10
92	Chemoselective and Diastereoselective Synthesis of <i>C</i> â€Aryl Nucleoside Analogues by Nickelâ€Catalyzed Crossâ€Coupling of Furanosyl Acetates with Aryl Iodides. Angewandte Chemie, 2022, 134,	2.0	10
93	Bacterial infection and symbiosis. Molecular Biology of the Cell, 2018, 29, 683-684.	2.1	1
94	Feng Shao: Getting a sense for the defense. Journal of Cell Biology, 2015, 210, 174-175.	5.2	0
95	YopT Protease and its Homologs. , 2013, , 2170-2174.		Ο