
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6970560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZFP36L1 Regulates Fgf21 mRNA Turnover and Modulates Alcoholic Hepatic Steatosis and Inflammation in Mice. American Journal of Pathology, 2022, 192, 208-225.	3.8	2
2	ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice. Journal of Clinical Investigation, 2022, 132, .	8.2	8
3	Backbone and sidechain 1H, 15N and 13C resonance assignments of the free and RNA-bound tandem zinc finger domain of the tristetraprolin family member from Selaginella moellendorffii. Biomolecular NMR Assignments, 2022, , 1.	0.8	0
4	Clinical implications of tristetraprolin (TTP) modulation in the treatment of inflammatory diseases. , 2022, 239, 108198.		6
5	Beta-hydroxybutyrate dampens adipose progenitors' profibrotic activation through canonical Tgfβ signaling and non-canonical ZFP36-dependent mechanisms. Molecular Metabolism, 2022, 61, 101512.	6.5	6
6	The RNA-binding protein tristetraprolin regulates RALDH2 expression by intestinal dendritic cells and controls local Treg homeostasis. Mucosal Immunology, 2021, 14, 80-91.	6.0	4
7	Tristetraprolin Promotes Hepatic Inflammation and Tumor Initiation but Restrains Cancer Progression to Malignancy. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 597-621.	4.5	10
8	Tristetraprolin expression by keratinocytes protects against skin carcinogenesis. JCI Insight, 2021, 6, .	5.0	7
9	Tristetraprolin Prevents Gastric Metaplasia in Mice by Suppressing Pathogenic Inflammation. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1831-1845.	4.5	4
10	ZFP36L2 Role in Thyroid Functionality. International Journal of Molecular Sciences, 2021, 22, 9379.	4.1	1
11	A post-transcriptional regulon controlled by TtpA, the single tristetraprolin family member expressed in Dictyostelium discoideum. Nucleic Acids Research, 2021, 49, 11920-11937.	14.5	3
12	Identification of Alternative Polyadenylation in Cyanidioschyzon merolae Through Long-Read Sequencing of mRNA. Frontiers in Genetics, 2021, 12, 818697.	2.3	4
13	Tristetraprolin Overexpression in Non-hematopoietic Cells Protects Against Acute Lung Injury in Mice. Frontiers in Immunology, 2020, 11, 2164.	4.8	6
14	Tristetraprolin Regulates TH17 Cell Function and Ameliorates DSS-Induced Colitis in Mice. Frontiers in Immunology, 2020, 11, 1952.	4.8	9
15	Bone marrow deficiency of mRNA decaying protein Tristetraprolin increases inflammation and mitochondrial ROS but reduces hepatic lipoprotein production in LDLR knockout mice. Redox Biology, 2020, 37, 101609.	9.0	35
16	Tristetraprolin regulates necroptosis during tonic Toll-like receptor 4 (TLR4) signaling in murine macrophages. Journal of Biological Chemistry, 2020, 295, 4661-4672.	3.4	9
17	Regulated Tristetraprolin Overexpression Dampens the Development and Pathogenesis of Experimental Autoimmune Uveitis. Frontiers in Immunology, 2020, 11, 583510.	4.8	4
18	Abstract 263: Loss of the RNA-binding Protein ZFP36L2 Results in Peri-partum Cardiomyopathy Through Dysregulation of the P53-mTOR Pathway. Circulation Research, 2020, 127, .	4.5	0

#	Article	IF	CITATIONS
19	Tristetraprolin targets Nos2 expression in the colonic epithelium. Scientific Reports, 2019, 9, 14413.	3.3	11
20	The mRNA-binding Protein TTP/ZFP36 in Hepatocarcinogenesis and Hepatocellular Carcinoma. Cancers, 2019, 11, 1754.	3.7	20
21	Tip60- and sirtuin 2-regulated MARCKS acetylation and phosphorylation are required for diabetic embryopathy. Nature Communications, 2019, 10, 282.	12.8	26
22	Importance of the Conserved Carboxyl-Terminal CNOT1 Binding Domain to Tristetraprolin Activity <i>In Vivo</i> . Molecular and Cellular Biology, 2019, 39, .	2.3	17
23	The tandem zinc finger RNA binding domain of members of the tristetraprolin protein family. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1531.	6.4	17
24	Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis. Cell Stem Cell, 2019, 24, 707-723.e8.	11.1	145
25	Inhibiting transcription in cultured metazoan cells with actinomycin D to monitor mRNA turnover. Methods, 2019, 155, 77-87.	3.8	37
26	Chromatin Modification and Global Transcriptional Silencing in the Oocyte Mediated by the mRNA Decay Activator ZFP36L2. Developmental Cell, 2018, 44, 392-402.e7.	7.0	65
27	MARCKS Is Necessary for Netrin-DCC Signaling and Corpus Callosum Formation. Molecular Neurobiology, 2018, 55, 8388-8402.	4.0	19
28	Tristetraprolin Is Required for Alveolar Bone Homeostasis. Journal of Dental Research, 2018, 97, 946-953.	5.2	16
29	A Knock-In Tristetraprolin (TTP) Zinc Finger Point Mutation in Mice: Comparison with Complete TTP Deficiency. Molecular and Cellular Biology, 2018, 38, .	2.3	11
30	Control of cytokine mRNA degradation by the histone deacetylase inhibitor ITF2357 in rheumatoid arthritis fibroblast-like synoviocytes: beyond transcriptional regulation. Arthritis Research and Therapy, 2018, 20, 148.	3.5	30
31	Myeloid-specific deletion of Zfp36 protects against insulin resistance and fatty liver in diet-induced obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E676-E693.	3.5	19
32	mRNA-binding protein tristetraprolin is essential for cardiac response to iron deficiency by regulating mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6291-E6300.	7.1	57
33	Hepatic tristetraprolin promotes insulin resistance through RNA destabilization of FGF21. JCI Insight, 2018, 3, .	5.0	25
34	Conditional ablation of the RFX4 isoform 1 transcription factor: Allele dosage effects on brain phenotype. PLoS ONE, 2018, 13, e0190561.	2.5	11
35	Expression of the mRNA stability regulator Tristetraprolin is required for lactation maintenance in the mouse mammary gland. Oncotarget, 2018, 9, 8278-8289.	1.8	7
36	An Ancient Family of RNA-Binding Proteins: Still Important!. Trends in Biochemical Sciences, 2017, 42, 285-296.	7.5	55

#	Article	IF	CITATIONS
37	3'UTR AU-Rich Elements (AREs) and the RNA-Binding Protein Tristetraprolin (TTP) Are Not Required for the LPS-Mediated Destabilization of Phospholipase-Cβ-2 mRNA in Murine Macrophages. Inflammation, 2017, 40, 645-656.	3.8	7
38	RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nature Reviews Immunology, 2017, 17, 130-143.	22.7	258
39	Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity, 2017, 47, 1083-1099.e6.	14.3	450
40	01.03â€Ttp/s100a9 deficient mice promote a tnf-dependent psoriatic arthritis phenotype triggered by the bacterial environment. , 2017, , .		0
41	Tristetraprolin expression by keratinocytes controls local and systemic inflammation. JCI Insight, 2017, 2, .	5.0	42
42	Mouse Embryonic Fibroblast Cell Culture and Stimulation. Bio-protocol, 2016, 6, .	0.4	41
43	Deficiency of the placenta- and yolk sac-specific tristetraprolin family member ZFP36L3 identifies likely mRNA targets and an unexpected link to placental iron metabolism. Development (Cambridge), 2016, 143, 1424-33.	2.5	18
44	Effects of Combined Tristetraprolin/Tumor Necrosis Factor Receptor Deficiency on the Splenic Transcriptome. Molecular and Cellular Biology, 2016, 36, 1395-1411.	2.3	7
45	Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation. Blood, 2016, 127, 1468-1480.	1.4	34
46	Tristetraprolin as a Therapeutic Target in Inflammatory Disease. Trends in Pharmacological Sciences, 2016, 37, 811-821.	8.7	72
47	A1.30â€A key role of S100A9 in the pathogenesis of psoriatic arthritis in TTP/S100 deficient mice. Annals of the Rheumatic Diseases, 2016, 75, A13.1-A13.	0.9	3
48	The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Research, 2016, 44, gkw474.	14.5	128
49	Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1865-1870.	7.1	79
50	Emergence and evolution of Zfp36l3. Molecular Phylogenetics and Evolution, 2016, 94, 518-530.	2.7	11
51	Measurement of mRNA Decay in Mouse Embryonic Fibroblasts. Bio-protocol, 2016, 6, .	0.4	10
52	Postâ€ŧranscriptional regulation of transcript abundance by a conserved member of the tristetraprolin family in <scp><i>C</i></scp> <i>andida albicans</i> . Molecular Microbiology, 2015, 95, 1036-1053.	2.5	19
53	Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. ELife, 2015, 4, e03390.	6.0	114
54	Tristetraprolin (TTP) coordinately regulates primary and secondary cellular responses to proinflammatory stimuli. Journal of Leukocyte Biology, 2015, 97, 723-736.	3.3	44

#	Article	IF	CITATIONS
55	Myristoylated Alanineâ€Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. Journal of the American Heart Association, 2015, 4, e002255.	3.7	31
56	Functional Equivalence of an Evolutionarily Conserved RNA Binding Module. Journal of Biological Chemistry, 2015, 290, 24413-24423.	3.4	15
57	Global Analysis of Posttranscriptional Gene Expression in Response to Sodium Arsenite. Environmental Health Perspectives, 2015, 123, 324-330.	6.0	7
58	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	1.1	97
59	MARCKS â€dependent mucin clearance and lipid metabolism in ependymal cells are required for maintenance of forebrain homeostasis during aging. Aging Cell, 2015, 14, 764-773.	6.7	22
60	Identification of a Major Phosphopeptide in Human Tristetraprolin by Phosphopeptide Mapping and Mass Spectrometry. PLoS ONE, 2014, 9, e100977.	2.5	11
61	Myeloid ZFP36L1 Does Not Regulate Inflammation or Host Defense in Mouse Models of Acute Bacterial Infection. PLoS ONE, 2014, 9, e109072.	2.5	9
62	RNase L Attenuates Mitogen-stimulated Gene Expression via Transcriptional and Post-transcriptional Mechanisms to Limit the Proliferative Response. Journal of Biological Chemistry, 2014, 289, 33629-33643.	3.4	17
63	The Drosophila Tis11 Protein and Its Effects on mRNA Expression in Flies. Journal of Biological Chemistry, 2014, 289, 35042-35060.	3.4	16
64	An RNA Binding Protein Promotes Axonal Integrity in Peripheral Neurons by Destabilizing REST. Journal of Neuroscience, 2014, 34, 16650-16661.	3.6	14
65	High-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategies. Cell, 2014, 159, 1698-1710.	28.9	196
66	Differential postâ€transcriptional regulation of <scp>IL</scp> â€10 by <scp>TLR</scp> 2 and <scp>TLR</scp> 4â€activated macrophages. European Journal of Immunology, 2014, 44, 856-866.	2.9	42
67	Transforming Growth Factor β Regulates P-Body Formation through Induction of the mRNA Decay Factor Tristetraprolin. Molecular and Cellular Biology, 2014, 34, 180-195.	2.3	40
68	MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Research, 2014, 24, 576-594.	12.0	56
69	APOε4 is associated with enhanced in vivo innate immune responses in human subjects. Journal of Allergy and Clinical Immunology, 2014, 134, 127-134.e9.	2.9	149
70	Phylogenetic Distribution and Evolution of the Linked RNA-Binding and NOT1-Binding Domains in the Tristetraprolin Family of Tandem CCCH Zinc Finger Proteins. Journal of Interferon and Cytokine Research, 2014, 34, 297-306.	1.2	38
71	Endothelial Dysfunction in Tristetraprolin-deficient Mice Is Not Caused by Enhanced Tumor Necrosis Factor-α Expression. Journal of Biological Chemistry, 2014, 289, 15653-15665.	3.4	20
72	Mutational and Structural Analysis of the Tandem Zinc Finger Domain of Tristetraprolin. Journal of Biological Chemistry, 2014, 289, 565-580.	3.4	18

#	Article	IF	CITATIONS
73	Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biology, 2014, 15, R12.	9.6	141
74	PARP-14 combines with tristetraprolin in the selective posttranscriptional control of macrophage tissue factor expression. Blood, 2014, 124, 3646-3655.	1.4	58
75	The RNA-Binding Protein, ZFP36L2, Influences Ovulation and Oocyte Maturation. PLoS ONE, 2014, 9, e97324.	2.5	35
76	MSK1 and MSK2 Inhibit Lipopolysaccharide-Induced Prostaglandin Production via an Interleukin-10 Feedback Loop. Molecular and Cellular Biology, 2013, 33, 1456-1467.	2.3	38
77	A functional link between heme oxygenase-1 and tristetraprolin in the anti-inflammatory effects of nicotine. Free Radical Biology and Medicine, 2013, 65, 1331-1339.	2.9	27
78	LPS-induced production of TNF-α and IL-6 in mast cells is dependent on p38 but independent of TTP. Cellular Signalling, 2013, 25, 1339-1347.	3.6	30
79	Tristetraprolin (TTP): Interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 666-679.	1.9	320
80	Structural basis for the recruitment of the human CCR4–NOT deadenylase complex by tristetraprolin. Nature Structural and Molecular Biology, 2013, 20, 735-739.	8.2	230
81	Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. Journal of Experimental Medicine, 2013, 210, 1675-1684.	8.5	98
82	Suppression of IL-12 Production by Tristetraprolin through Blocking NF-кB Nuclear Translocation. Journal of Immunology, 2013, 191, 3922-3930.	0.8	28
83	Life without TTP: apparent absence of an important anti-inflammatory protein in birds. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R689-R700.	1.8	20
84	Functional Role of the Interaction between Polysialic Acid and Myristoylated Alanine-rich C Kinase Substrate at the Plasma Membrane. Journal of Biological Chemistry, 2013, 288, 6726-6742.	3.4	36
85	mRNA-Binding Protein ZFP36 Is Expressed in Atherosclerotic Lesions and Reduces Inflammation in Aortic Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1212-1220.	2.4	58
86	Posttranscriptional Regulation of Cell-Cell Interaction Protein-Encoding Transcripts by Zfs1p in <i>Schizosaccharomyces pombe</i> . Molecular and Cellular Biology, 2012, 32, 4206-4214.	2.3	23
87	Direct Binding of Specific AUF1 Isoforms to Tandem Zinc Finger Domains of Tristetraprolin (TTP) Family Proteins. Journal of Biological Chemistry, 2012, 287, 5459-5471.	3.4	31
88	Regulation of p21/CIP1/WAF-1 mediated cell-cycle arrest by RNase L and tristetraprolin, and involvement of AU-rich elements. Nucleic Acids Research, 2012, 40, 7739-7752.	14.5	48
89	Cutting Edge: IL-10–Mediated Tristetraprolin Induction Is Part of a Feedback Loop That Controls Macrophage STAT3 Activation and Cytokine Production. Journal of Immunology, 2012, 189, 2089-2093.	0.8	62
90	Myeloid-Specific Tristetraprolin Deficiency in Mice Results in Extreme Lipopolysaccharide Sensitivity in an Otherwise Minimal Phenotype. Journal of Immunology, 2012, 188, 5150-5159.	0.8	97

#	Article	IF	CITATIONS
91	Protein kinase C–delta deficiency perturbs bone homeostasis by selective uncoupling of cathepsin K secretion and ruffled border formation in osteoclasts. Journal of Bone and Mineral Research, 2012, 27, 2452-2463.	2.8	49
92	Tristetraprolin Impairs Myc-Induced Lymphoma and Abolishes the Malignant State. Cell, 2012, 150, 563-574.	28.9	100
93	mTOR Regulates Cellular Iron Homeostasis through Tristetraprolin. Cell Metabolism, 2012, 16, 645-657.	16.2	148
94	Coordinated Expression of Tristetraprolin Post-Transcriptionally Attenuates Mitogenic Induction of the Oncogenic Ser/Thr Kinase Pim-1. PLoS ONE, 2012, 7, e33194.	2.5	13
95	The Environmental Polymorphism Registry: A Unique Resource that Facilitates Translational Research of Environmental Disease. Environmental Health Perspectives, 2011, 119, 1523-1527.	6.0	13
96	Posttranscriptional Regulation of IL-23 Expression by IFN-Î ³ through Tristetraprolin. Journal of Immunology, 2011, 186, 6454-6464.	0.8	48
97	Zinc Finger Protein Tristetraprolin Interacts with CCL3 mRNA and Regulates Tissue Inflammation. Journal of Immunology, 2011, 187, 2696-2701.	0.8	55
98	Inflammation: cytokines and RNAâ€based regulation. Wiley Interdisciplinary Reviews RNA, 2010, 1, 60-80.	6.4	56
99	Hippocampal infusions of MARCKS peptides impair memory of rats on the radial-arm maze. Brain Research, 2010, 1308, 147-152.	2.2	12
100	The RNA-binding zinc-finger protein tristetraprolin regulates AU-rich mRNAs involved in breast cancer-related processes. Oncogene, 2010, 29, 4205-4215.	5.9	95
101	Phosphorylation of Human Tristetraprolin in Response to Its Interaction with the Cbl Interacting Protein CIN85. PLoS ONE, 2010, 5, e9588.	2.5	22
102	Left-Sided Cardiac Valvulitis in Tristetraprolin-Deficient Mice. American Journal of Pathology, 2010, 176, 1484-1493.	3.8	19
103	Tristetraprolin Mediates Interferon-γ mRNA Decay. Journal of Biological Chemistry, 2009, 284, 11216-11223.	3.4	109
104	Tristetraprolin Is Required for Full Anti-Inflammatory Response of Murine Macrophages to IL-10. Journal of Immunology, 2009, 183, 1197-1206.	0.8	96
105	Stimulation of Polo-Like Kinase 3 mRNA Decay by Tristetraprolin. Molecular and Cellular Biology, 2009, 29, 1999-2010.	2.3	30
106	MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development (Cambridge), 2009, 136, 2965-2975.	2.5	65
107	The mRNA-Destabilizing Protein Tristetraprolin Is Suppressed in Many Cancers, Altering Tumorigenic Phenotypes and Patient Prognosis. Cancer Research, 2009, 69, 5168-5176.	0.9	200
108	The Arabidopsis Tandem Zinc Finger Protein AtTZF1 Traffics between the Nucleus and Cytoplasmic Foci and Binds Both DNA and RNA Â Â Â. Plant Physiology, 2009, 152, 151-165.	4.8	172

#	Article	IF	CITATIONS
109	The p38 MAPK pathway inhibits tristetraprolinâ€directed decay of interleukinâ€10 and proâ€inflammatory mediator mRNAs in murine macrophages. FEBS Letters, 2009, 583, 1933-1938.	2.8	81
110	Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood, 2009, 114, 2401-2410.	1.4	130
111	The Environmental Polymorphisms Registry: a DNA resource to study genetic susceptibility loci. Human Genetics, 2008, 123, 207-214.	3.8	15
112	Diversity in penaeidin antimicrobial peptide form and function. Developmental and Comparative Immunology, 2008, 32, 167-181.	2.3	72
113	G-protein Pathway Suppressor 2 (GPS2) Interacts with the Regulatory Factor X4 Variant 3 (RFX4_v3) and Functions as a Transcriptional Co-activator. Journal of Biological Chemistry, 2008, 283, 8580-8590.	3.4	24
114	Inhibition of Native and Recombinant Nicotinic Acetylcholine Receptors by the Myristoylated Alanine-Rich C Kinase Substrate Peptide. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 884-890.	2.5	5
115	Genome-wide Analysis Identifies Interleukin-10 mRNA as Target of Tristetraprolin. Journal of Biological Chemistry, 2008, 283, 11689-11699.	3.4	217
116	Characterization of zfs1 as an mRNA-binding and -destabilizing Protein in Schizosaccharomyces pombe. Journal of Biological Chemistry, 2008, 283, 2586-2594.	3.4	28
117	A Unique C-terminal Repeat Domain Maintains the Cytosolic Localization of the Placenta-specific Tristetraprolin Family Member ZFP36L3. Journal of Biological Chemistry, 2008, 283, 14792-14800.	3.4	23
118	Evaluating the Control of mRNA Decay in Fission Yeast. Methods in Enzymology, 2008, 449, 73-95.	1.0	2
119	Predictors of Acquired Lipodystrophy in Juvenile-Onset Dermatomyositis and a Gradient of Severity. Medicine (United States), 2008, 87, 70-86.	1.0	137
120	Tristetraprolin, a Negative Regulator of mRNA Stability, Is Increased in Old B Cells and Is Involved in the Degradation of E47 mRNA. Journal of Immunology, 2007, 179, 918-927.	0.8	91
121	Regulation of Suppressor of Cytokine Signaling 3 (SOCS3) mRNA Stability by TNF-α Involves Activation of the MKK6/p38MAPK/MK2 Cascade. Journal of Immunology, 2007, 178, 2813-2826.	0.8	101
122	RECQL, a Member of the RecQ Family of DNA Helicases, Suppresses Chromosomal Instability. Molecular and Cellular Biology, 2007, 27, 1784-1794.	2.3	107
123	Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Archives of Biochemistry and Biophysics, 2007, 462, 278-285.	3.0	74
124	Role of the RNA-binding Protein Tristetraprolin (TTP) in Glucocorticoid (GC)-mediated Gene Regulation. Journal of Allergy and Clinical Immunology, 2007, 119, S134.	2.9	3
125	Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin. Expert Review of Proteomics, 2007, 4, 711-726.	3.0	47
126	Regulatory factor X4 variant 3: A transcription factor involved in brain development and disease. Journal of Neuroscience Research, 2007, 85, 3515-3522.	2.9	25

#	Article	IF	CITATIONS
127	Substrate Dependence of Conformational Changes in the RNA-Binding Domain of Tristetraprolin Assessed by Fluorescence Spectroscopy of Tryptophan Mutantsâ€. Biochemistry, 2006, 45, 13807-13817.	2.5	17
128	Genetic variations in ZFP36 and their possible relationship to autoimmune diseases. Journal of Autoimmunity, 2006, 26, 182-196.	6.5	51
129	Interferons limit inflammatory responses by induction of tristetraprolin. Blood, 2006, 107, 4790-4797.	1.4	136
130	Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis. Biochemical Journal, 2006, 394, 285-297.	3.7	76
131	Identification of potential target genes for RFX4_v3, a transcription factor critical for brain development. Journal of Neurochemistry, 2006, 98, 860-875.	3.9	30
132	Transmembrane TNF protects mutant mice against intracellular bacterial infections, chronic inflammation and autoimmunity. European Journal of Immunology, 2006, 36, 2768-2780.	2.9	116
133	Myristoylated alanine rich C kinase substrate (MARCKS) heterozygous mutant mice exhibit deficits in hippocampal mossy fiber-CA3 long-term potentiation. Hippocampus, 2006, 16, 495-503.	1.9	25
134	Immunogenetic Risk and Protective Factors for the Idiopathic Inflammatory Myopathies. Medicine (United States), 2006, 85, 111-127.	1.0	140
135	Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Regulates Tumor Necrosis Factor mRNA Stability and Translation Mainly by Altering Tristetraprolin Expression, Stability, and Binding to Adenine/Uridine-Rich Element. Molecular and Cellular Biology, 2006, 26, 2399-2407.	2.3	365
136	The Feasibility of Creating a Population-Based National Twin Registry in the United States. Twin Research and Human Genetics, 2006, 9, 919-926.	0.6	0
137	Cell type-specific upregulation of myristoylated alanine-rich C kinase substrate and protein kinase C-α, -β I, -β II, and -δ in microglia following kainic acid-induced seizures. Experimental and Molecular Medicine, 2006, 38, 310-319.	7.7	13
138	Novel mRNA Targets for Tristetraprolin (TTP) Identified by Global Analysis of Stabilized Transcripts in TTP-Deficient Fibroblasts. Molecular and Cellular Biology, 2006, 26, 9196-9208.	2.3	195
139	Insulin and cinnamon polyphenols increase the amount of insulin receptor b, glucose transporter 4, and antiâ€inflammatory protein tristetraprolin in mouse 3T3â€L1 adipocytes. FASEB Journal, 2006, 20, A939.	0.5	Ο
140	Tandem CCCH Zinc Finger Proteins in mRNA Binding. , 2005, , 80-90.		12
141	Effect of myristoylated alanine-rich C kinase substrate (MARCKS) overexpression on hippocampus-dependent learning and hippocampal synaptic plasticity inMARCKS transgenic mice. Hippocampus, 2005, 15, 675-683.	1.9	28
142	Influence of Nonameric AU-rich Tristetraprolin-binding Sites on mRNA Deadenylation and Turnover. Journal of Biological Chemistry, 2005, 280, 34365-34377.	3.4	47
143	Myristoylated Alanine-rich C Kinase Substrate-mediated Neurotensin Release via Protein Kinase C-δ Downstream of the Rho/ROK Pathway. Journal of Biological Chemistry, 2005, 280, 8351-8357.	3.4	36
144	Tristetraprolin Down-Regulates <i>IL-2</i> Gene Expression through AU-Rich Element-Mediated mRNA Decay. Journal of Immunology, 2005, 174, 953-961.	0.8	190

#	Article	IF	CITATIONS
145	Zfp36l3, a Rodent X Chromosome Gene Encoding a Placenta-Specific Member of the Tristetraprolin Family of CCCH Tandem Zinc Finger Proteins. Biology of Reproduction, 2005, 73, 297-307.	2.7	76
146	HuR as a Negative Posttranscriptional Modulator in Inflammation. Molecular Cell, 2005, 19, 777-789.	9.7	225
147	The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development (Cambridge), 2004, 131, 4883-4893.	2.5	129
148	Chorioallantoic Fusion Defects and Embryonic Lethality Resulting from Disruption of Zfp36L1 , a Gene Encoding a CCCH Tandem Zinc Finger Protein of the Tristetraprolin Family. Molecular and Cellular Biology, 2004, 24, 6445-6455.	2.3	157
149	Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2011-2016.	7.1	181
150	Immunological Characterization of Tristetraprolin as a Low Abundance, Inducible, Stable Cytosolic Protein. Journal of Biological Chemistry, 2004, 279, 21489-21499.	3.4	91
151	RNA Sequence Elements Required for High Affinity Binding by the Zinc Finger Domain of Tristetraprolin. Journal of Biological Chemistry, 2004, 279, 27870-27877.	3.4	132
152	Identification of a novel Xenopus laevis poly (A) binding protein. Biology of the Cell, 2004, 96, 519-519.	2.0	19
153	The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis Research, 2004, 6, 248.	2.0	145
154	Neuroanatomical development in the absence of PKC phosphorylation of the myristoylated alanine-rich C-kinase substrate (MARCKS) protein. Developmental Brain Research, 2003, 144, 25-42.	1.7	14
155	Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-α mRNA and serve as a substrate for mitogen-activated protein kinases. Archives of Biochemistry and Biophysics, 2003, 412, 106-120.	3.0	74
156	Graded phenotypic response to partial and complete deficiency of a brain-specific transcript variant of the winged helix transcription factor RFX4. Development (Cambridge), 2003, 130, 4539-4552.	2.5	92
157	Characteristics of the Interaction of a Synthetic Human Tristetraprolin Tandem Zinc Finger Peptide with AU-rich Element-containing RNA Substrates. Journal of Biological Chemistry, 2003, 278, 19947-19955.	3.4	113
158	Interaction of Retroviral Tax Oncoproteins With Tristetraprolin and Regulation of Tumor Necrosis Factor-Â Expression. Journal of the National Cancer Institute, 2003, 95, 1846-1859.	6.3	51
159	Tristetraprolin and Its Family Members Can Promote the Cell-Free Deadenylation of AU-Rich Element-Containing mRNAs by Poly(A) Ribonuclease. Molecular and Cellular Biology, 2003, 23, 3798-3812.	2.3	217
160	Polymorphisms in the Genes Encoding Members of the Tristetraprolin Family of Human Tandem CCCH Zinc Finger Proteins. Progress in Molecular Biology and Translational Science, 2003, 75, 43-68.	1.9	19
161	Regulation of mRNA Turnover. , 2003, , 319-322.		0
162	Members of the Tristetraprolin Family of Tandem CCCH Zinc Finger Proteins Exhibit CRM1-dependent Nucleocytoplasmic Shuttling. Journal of Biological Chemistry, 2002, 277, 11606-11613.	3.4	98

#	Article	IF	CITATIONS
163	Load-Dependent and -Independent Regulation of Proinflammatory Cytokine and Cytokine Receptor Gene Expression in the Adult Mammalian Heart. Circulation, 2002, 105, 2192-2197.	1.6	114
164	Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochemical Society Transactions, 2002, 30, 945-952.	3.4	373
165	Analysis of the Role of RecQ Helicases in RNAi in Mammals. Biochemical and Biophysical Research Communications, 2002, 291, 1119-1122.	2.1	8
166	Interactions of CCCH Zinc Finger Proteins with mRNA. Journal of Biological Chemistry, 2002, 277, 9606-9613.	3.4	132
167	Xenopus laevis genomic biomarkers for environmental toxicology studies. , 2002, , .		2
168	The NIEHS Xenopus maternal EST project: interim analysis of the first 13,879 ESTs from unfertilized eggs. Gene, 2001, 267, 71-87.	2.2	20
169	Roles of tumor necrosis factor-α receptor subtypes in the pathogenesis of the tristetraprolin-deficiency syndrome. Blood, 2001, 98, 2389-2395.	1.4	112
170	Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO Journal, 2001, 20, 3760-3770.	7.8	222
171	Decreased Sensitivity of Tristetraprolin-deficient Cells to p38 Inhibitors Suggests the Involvement of Tristetraprolin in the p38 Signaling Pathway. Journal of Biological Chemistry, 2001, 276, 42580-42587.	3.4	174
172	Overexpression of the Myristoylated Alanine-rich C-kinase Substrate Inhibits Cell Adhesion to Extracellular Matrix Components. Journal of Biological Chemistry, 2001, 276, 32264-32273.	3.4	40
173	Interactions of CCCH Zinc Finger Proteins with mRNA. Journal of Biological Chemistry, 2001, 276, 23144-23154.	3.4	135
174	Tristetraprolin is a regulator of granulocyte-macrophage colony-stimulating factor mRNA stability. Experimental Hematology, 2000, 28, 36.	0.4	1
175	Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood, 2000, 95, 1891-1899.	1.4	409
176	Interactions of CCCH Zinc Finger Proteins with mRNA. Journal of Biological Chemistry, 2000, 275, 17827-17837.	3.4	316
177	Phagocytic and macropinocytic activity in MARCKS-deficient macrophages and fibroblasts. American Journal of Physiology - Cell Physiology, 1999, 277, C163-C173.	4.6	46
178	Evidence that Tristetraprolin Binds to AU-Rich Elements and Promotes the Deadenylation and Destabilization of Tumor Necrosis Factor Alpha mRNA. Molecular and Cellular Biology, 1999, 19, 4311-4323.	2.3	678
179	Identification of four CCCH zinc finger proteins in Xenopus, including a novel vertebrate protein with four zinc fingers and severely restricted expression. Gene, 1999, 228, 133-145.	2.2	51
180	Protein kinase C regulates the nuclear localization of diacylglycerol kinase-ζ. Nature, 1998, 394, 697-700.	27.8	263

#	Article	IF	CITATIONS
181	Transgenic Complementation of MARCKS Deficiency with a Nonmyristoylatable, Pseudo-Phosphorylated Form of MARCKS: Evidence for Simultaneous Positive and Dominant-Negative Effects on Central Nervous System Development. Developmental Biology, 1998, 200, 146-157.	2.0	11
182	Promoter Sequence, Expression, and Fine Chromosomal Mapping of the Human Gene (MLP) Encoding the MARCKS-like Protein: Identification of Neighboring and Linked Polymorphic Loci forMLPandMACSand Use in the Evaluation of Human Neural Tube Defects. Genomics, 1998, 49, 253-264.	2.9	32
183	Feedback Inhibition of Macrophage Tumor Necrosis Factor- Production by Tristetraprolin. , 1998, 281, 1001-1005.		1,055
184	Characteristics of the Intron Involvement in the Mitogen-induced Expression of Zfp-36. Journal of Biological Chemistry, 1998, 273, 506-517.	3.4	44
185	Effect of reduced myristoylated alanine-rich C kinase substrate expression on hippocampal mossy fiber development and spatial learning in mutant mice: Transgenic rescue and interactions with gene background. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95. 14517-14522.	7.1	62
186	Disruption of the Gene Encoding the Mitogen-regulated Translational Modulator PHAS-I in Mice. Journal of Biological Chemistry, 1997, 272, 31510-31514.	3.4	31
187	Identification and Characterization of Cathepsin B as the Cellular MARCKS Cleaving Enzyme. Journal of Biological Chemistry, 1997, 272, 23833-23842.	3.4	37
188	Mechanisms of MARCKS Gene Activation during XenopusDevelopment. Journal of Biological Chemistry, 1997, 272, 29290-29300.	3.4	15
189	The Heterotrimeric G Protein Gαi2 Mediates Lysophosphatidic Acid-stimulated Induction of the c-fos Gene in Mouse Fibroblasts. Journal of Biological Chemistry, 1997, 272, 773-781.	3.4	34
190	Widespread Neuronal Ectopia Associated with Secondary Defects in Cerebrocortical Chondroitin Sulfate Proteoglycans and Basal Lamina in MARCKS-Deficient Mice. Experimental Neurology, 1997, 145, 46-61.	4.1	56
191	Calcium binding and conformational properties of calmodulin complexed with peptides derived from myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP). European Biophysics Journal, 1997, 25, 239-247.	2.2	47
192	Bone marrow transplantation reproduces the tristetraprolin-deficiency syndrome in recombination activating gene-2 (-{-) mice. Evidence that monocyte/macrophage progenitors may be responsible for TNFalpha overproduction Journal of Clinical Investigation, 1997, 100, 986-995.	8.2	133
193	Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth. Gene, 1996, 174, 225-233.	2.2	71
194	Nonmyristoylated MARCKS Complements Some but Not All of the Developmental Defects Associated with MARCKS Deficiency in Mice. Developmental Biology, 1996, 179, 135-147.	2.0	35
195	A Pathogenetic Role for TNFα in the Syndrome of Cachexia, Arthritis, and Autoimmunity Resulting from Tristetraprolin (TTP) Deficiency. Immunity, 1996, 4, 445-454.	14.3	726
196	Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Molecular Endocrinology, 1996, 10, 140-146.	3.7	36
197	Developmental expression of MARCKS and protein kinase C in mice in relation to the exencephaly resulting from MARCKS deficiency. Developmental Brain Research, 1996, 96, 62-75.	1.7	39
198	Myristoylation-dependent and Electrostatic Interactions Exert Independent Effects on the Membrane Association of the Myristoylated Alanine-rich Protein Kinase C Substrate Protein in Intact Cells. Journal of Biological Chemistry, 1996, 271, 23424-23430.	3.4	68

#	Article	IF	CITATIONS
199	Protein Kinase C-mediated Phosphorylation of the Myristoylated Alanine-rich C-kinase Substrate Protects It from Specific Proteolytic Cleavage. Journal of Biological Chemistry, 1996, 271, 553-562.	3.4	29
200	MARCKS deficiency in mice leads to abnormal brain development and perinatal death Proceedings of the United States of America, 1995, 92, 944-948.	7.1	282
201	Zinc inhibits turnover of labile mRNAs in intact cells. Journal of Cellular Physiology, 1995, 162, 378-387.	4.1	34
202	Promoter Analysis of Zfp-36 the Mitogen-inducible Gene Encoding the Zinc Finger Protein Tristetraprolin. Journal of Biological Chemistry, 1995, 270, 25266-25272.	3.4	63
203	Membrane Association of the Myristoylated Alanine-rich C Kinase Substrate (MARCKS) Protein Journal of Biological Chemistry, 1995, 270, 13436-13445.	3.4	96
204	Phosphorylation of Tristetraprolin, a Potential Zinc Finger Transcription Factor, by Mitogen Stimulation in Intact Cells and by Mitogen-activated Protein Kinase in Vitro. Journal of Biological Chemistry, 1995, 270, 13341-13347.	3.4	116
205	Control of PHAS-I by Insulin in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1995, 270, 18531-18538.	3.4	234
206	Chromosomal localization of the gene encoding the human DNA helicase RECQL and its mouse homologue. Genomics, 1995, 26, 595-598.	2.9	21
207	Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin. Biophysical Journal, 1994, 67, 227-237.	0.5	172
208	Okadaic acid-sensitive protein phosphatases dephosphorylate MARCKS, a major protein kinase C substrate. FEBS Letters, 1993, 336, 37-42.	2.8	42
209	Nucleotide Sequence, Expression, and Chromosomal Mapping of Mrp and Mapping of Five Related Sequences. Genomics, 1993, 17, 194-204.	2.9	41
210	Regulation of peptide-calmodulin complexes by protein kinase C in vivo Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1585-1589.	7.1	43
211	Early protein kinase and biosynthetic responses to insulin. Biochemical Society Transactions, 1992, 20, 682-685.	3.4	1
212	Chromosomal mapping of the human (MACS) and mouse (Macs) genes encoding the MARCKS protein. Genomics, 1992, 14, 168-174.	2.9	23
213	Eukaryotic start and stop translation sites. Nucleic Acids Research, 1991, 19, 3185-3192.	14.5	631
214	The human TTP protein: sequence, alignment with related proteins, and chromosomal localization of the mouse and human genes. Nucleic Acids Research, 1991, 19, 3454-3454.	14.5	85
215	Giant two-dimensional gel electrophoresis: Methodological update and comparison with intermediate-format gel systems. Electrophoresis, 1990, 11, 269-279.	2.4	22
216	Neuropeptide Y binding and inhibition of cAMP accumulation in human neuroepithelioma cells. American Journal of Physiology - Cell Physiology, 1990, 258, C913-C922.	4.6	26

#	Article	IF	CITATIONS
217	Basal-Rate Intravenous Insulin Infusion Compared to Conventional Insulin Treatment in Patients With Type II Diabetes: A Prospective Crossover Trial. Diabetes Care, 1989, 12, 455-463.	8.6	18
218	Nucleotide sequence of a cDNA for the bovine myristoylated alanine-rich C kinase substrate (MARCKS). Nucleic Acids Research, 1989, 17, 3987-3988.	14.5	22
219	Myristoylated and nonmyristoylated forms of a protein are phosphorylated by protein kinase C. Science, 1989, 246, 503-506.	12.6	91
220	SEQUENCES OF INTEREST: Molecular Cloning, Sequence, and Expression of a cDNA Encoding the Chicken Myristoylated Alanine-Rich C Kinase Substrate (MARCKS). Molecular Endocrinology, 1989, 3, 1903-1906.	3.7	69
221	High Level, Cell-Specific Expression of Ornithine Decarboxylase Transcripts in Rat Genitourinary Tissues. Molecular Endocrinology, 1989, 3, 68-78.	3.7	46
222	Molecular cloning, characterization, and expression of a cDNA encoding the "80- to 87-kDa" myristoylated alanine-rich C kinase substrate: a major cellular substrate for protein kinase C Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4012-4016.	7.1	324
223	Approaches to the Study of Protein Kinase C Involvement in Signal Transduction. American Journal of the Medical Sciences, 1988, 296, 231-240.	1.1	52
224	Protein kinases 1988: a current perspective. FASEB Journal, 1988, 2, 2957-2969.	0.5	202
225	Tumor-promoting phorbol esters induce angiogenesis in vivo. American Journal of Physiology - Cell Physiology, 1988, 254, C318-C322.	4.6	45
226	Insulin Action in Normal and Protein Kinase C-Deficient Rat Hepatoma Cells. Effects on Protein Phosphorylation, Protein Kinase Activities, and Ornithine Decarboxylase Activities and Messenger Ribonucleic Acid Levels*. Molecular Endocrinology, 1987, 1, 44-52.	3.7	59
227	The Inhibition of Phosphoenolpyruvate Carboxykinase (Guanosine Triphosphate) Gene Expression by Insulin is Not Mediated by Protein Kinase C*. Molecular Endocrinology, 1987, 1, 53-59.	3.7	45
228	Protein kinase C-mediated phosphorylation in intact cells. Methods in Enzymology, 1987, 141, 412-424.	1.0	37
229	Chapter 16 Growth factor activation of protein kinase C-dependent and -independent pathways of protein phosphorylation in fibroblasts: relevance to activation of protein kinase C in neuronal tissues. Progress in Brain Research, 1986, 69, 183-195.	1.4	11
230	Insulin and growth factor effects on c-fos expression in normal and protein kinase C-deficient 3T3-L1 fibroblasts and adipocytes Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 9453-9457.	7.1	140
231	Plasma level of 13,14-dihydro-15-keto-PGE2 in patients with diabetic ketoacidosis and in normal fasting subjects. Diabetes, 1986, 35, 1004-1010.	0.6	8
232	[39] Implantable infusion pumps: Clinical applications. Methods in Enzymology, 1985, 112, 520-530.	1.0	3
233	[40] Implantable infusion pumps: Practical aspects. Methods in Enzymology, 1985, 112, 530-545.	1.0	2
234	Protein phosphorylation in a tetradecanoyl phorbol acetate-nonproliferative variant of 3T3 cells Molecular and Cellular Biology, 1985, 5, 2231-2237.	2.3	35

#	Article	IF	CITATIONS
235	Metabolic Response to Three Years of Continuous, Basal Rate Intravenous Insulin Infusion in Type II Diabetic Patients*. Journal of Clinical Endocrinology and Metabolism, 1985, 61, 753-760.	3.6	33
236	Characteristics of Insulin and Epidermal Growth Factor Stimulation of Receptor Autophosphorylation in Detergent Extracts of Rat Liver and Transplantable Rat Hepatomas*. Endocrinology, 1984, 114, 141-152.	2.8	75
237	Hormonal regulation of protein phosphorylation in isolated rat heart cells. American Journal of Physiology - Cell Physiology, 1984, 246, C439-C449.	4.6	12
238	[12] Systems for polyacrylamide gel electrophoresis. Methods in Enzymology, 1984, 104, 237-255.	1.0	189
239	Insulin binds to and promotes the phosphorylation of a M r 210 000 component of its receptor in detergent extracts of rat liver microsomes. FEBS Letters, 1983, 158, 243-246.	2.8	19
240	Glycerol Prevents Insulin Precipitation and Interruption of Flow in an Implantable Insulin Infusion Pump. Diabetes Care, 1983, 6, 387-392.	8.6	39
241	Insulin and growth factors stimulate the phosphorylation of a Mr-22000 protein in 3T3-L1 adipocytes. Biochemical Journal, 1983, 214, 11-19.	3.7	68
242	Reactive Hypoglycemia and Insulin Autoantibodies in Drug-Induced Lupus Erythematosus. Annals of Internal Medicine, 1983, 99, 182.	3.9	64
243	Implantable Insulin Infusion Devices. JAMA - Journal of the American Medical Association, 1982, 248, 2111.	7.4	4
244	Treatment of Severe Lactic Acidosis with Dichloroacetate. Diabetes Care, 1982, 5, 391-394.	8.6	20
245	The Use of an Implantable Insulin Pump in the Treatment of Type II Diabetes. New England Journal of Medicine, 1982, 307, 265-270.	27.0	69
246	Preliminary characterization of a heat-stable protein from rat adipose tissue whose phosphorylation is stimulated by insulin. Biochemical Journal, 1982, 204, 817-824.	3.7	44
247	Diabetic nephropathy in the uninephrectomized dog: Microscopic lesions after one year. Kidney International, 1982, 21, 721-724.	5.2	34
248	TREATMENT OF A TYPE II DIABETIC BY A TOTALLY IMPLANTABLE INSULIN INFUSION DEVICE. Lancet, The, 1981, 317, 1233-1235.	13.7	37
249	Rates of triacylglycerol entry into the circulation in the lactating rat. Biochemical Journal, 1981, 196, 637-640.	3.1	18
250	Intraarterial infusion chemotherapy for hepatic carcinoma using a totally implantable infusion pump. Cancer, 1980, 45, 866-869.	4.1	146
251	Transbrachial hepatic arterial chemotherapy using an implanted infusion pump. Diseases of the Colon and Rectum, 1980, 23, 223-227.	1.3	25
252	A Totally Implantable Drug Infusion Defice: Laboratory and Clinical Experience Using a Model with Single Flow Rate and New Design for Modulated Insulin Infusion. Diabetes Care, 1980, 3, 351-358.	8.6	38

#	Article	IF	CITATIONS
253	Implantable Drug-Delivery Systems. Scientific American, 1979, 241, 66-73.	1.0	110
254	Control of blood glucose in experimental diabetes by means of a totally implantable insulin infusion device. Diabetes, 1979, 28, 634-639.	0.6	18
255	The effect of continuous heparin infusion for one year on serum cholesterol and triglyceride concentrations in the dog. Atherosclerosis, 1977, 26, 23-27.	0.8	3
256	Factors regulating amino acid release from extrasplanchnic tissues in the rat. Interactions of alanine and glutamine. Biochemical Journal, 1975, 150, 379-387.	3.7	34
257	The effects of inhibition of gluconeogenesis on ketogenesis in starved and diabetic rats. Biochemical Journal, 1975, 148, 353-362.	3.7	64
258	Sequential amino acid measurements during experimental diabetic ketoacidosis. American Journal of Physiology, 1975, 228, 205-211.	5.0	23
259	British Health Care (Cont.). New England Journal of Medicine, 1975, 292, 1357-1358.	27.0	0
260	The effects of starvation and insulin on the release of gluconeogenic substrates from the extra-splanchnic tissues in vivo. FEBS Letters, 1974, 48, 310-313.	2.8	19
261	Experimental diabetic ketoacidosis. Sequential changes of metabolic intermediates in blood, liver, cerebrospinal fluid and brain after acute insulin deprivation in the streptozotocin-diabetic rat. Biochemical Journal, 1974, 138, 107-117.	3.7	62
262	The metabolic effects of sodium dichloroacetate in the starved rat. Biochemical Journal, 1974, 142, 279-286.	3.1	93