
Anders Lyngfelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6970471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling of gas conversion with an analytical reactor model for biomass chemical looping combustion (bio-CLC) of solid fuels. Chemical Engineering Journal, 2022, 433, 133563.	12.7	11
2	Thermochemical conversion of biomass volatiles via chemical looping: Comparison of ilmenite and steel converter waste materials as oxygen carriers. Fuel, 2022, 313, 122638.	6.4	30
3	Achieving Adequate Circulation in Chemical Looping Combustion─Design Proposal for a 200 MW _{th} Chemical Looping Combustion Circulating Fluidized Bed Boiler. Energy & Fuels, 2022, 36, 9588-9615.	5.1	22
4	Effects of Temperature, Operation Mode, and Steam Concentration on Alkali Release in Chemical Looping Conversion of Biomass─Experimental Investigation in a 10 kW _{th} Pilot. Energy & Fuels, 2022, 36, 9551-9570.	5.1	12
5	Oxygen Carrier and Alkali Interaction in Chemical Looping Combustion: Case Study Using a Braunite Mn Ore and Charcoal Impregnated with K ₂ CO ₃ or Na ₂ CO ₃ . Energy & Fuels, 2022, 36, 9470-9484.	5.1	10
6	Fate of NO and Ammonia in Chemical Looping Combustion─Investigation in a 300 W Chemical Looping Combustion Reactor System. Energy & Fuels, 2022, 36, 9628-9647.	5.1	4
7	Commissioning, performance benchmarking, and investigation of alkali emissions in a 10ÂkWth solid fuel chemical looping combustion pilot. Fuel, 2021, 287, 119530.	6.4	51
8	Performance of an oxy-polishing step in the 100â€ ⁻ kWth chemical looping combustion prototype. Chemical Engineering Journal, 2021, 409, 128202.	12.7	20
9	Experimental evaluation of manganese ores for chemical looping conversion of synthetic biomass volatiles in a 300ÂW reactor system. Journal of Environmental Chemical Engineering, 2021, 9, 105112.	6.7	18
10	Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion. Fuel Processing Technology, 2021, 215, 106743.	7.2	39
11	Investigation of biomass alkali release in a dual circulating fluidized bed chemical looping combustion system. Fuel, 2021, 297, 120743.	6.4	43
12	An experimental study of a volatiles distributor for solid fuels chemical-looping combustion process. Fuel Processing Technology, 2021, 220, 106898.	7.2	11
13	Experimental Investigation of Oxygen Carrier Aided Combustion (OCAC) with Methane and PSA Off-Gas. Applied Sciences (Switzerland), 2021, 11, 210.	2.5	4
14	Avoiding CO2 capture effort and cost for negative CO2 emissions using industrial waste in chemical-looping combustion/gasification of biomass. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 1-24.	2.1	36
15	Oxygenâ€Carrier Development of Calcium Manganite–Based Materials with Perovskite Structure for Chemicalâ€Looping Combustion of Methane. Energy Technology, 2020, 8, 2000069.	3.8	16
16	Chemical Looping Combustion: Status and Development Challenges. Energy & Fuels, 2020, 34, 9077-9093.	5.1	148
17	Chemical-looping combustion in a 100†kW unit using a mixture of synthetic and natural oxygen carriers – Operational results and fate of biomass fuel alkali. International Journal of Greenhouse Gas Control, 2019, 88, 371-382.	4.6	51
18	11,000†h of chemical-looping combustion operation—Where are we and where do we want to go?. International Journal of Greenhouse Gas Control, 2019, 88, 38-56.	4.6	148

#	Article	IF	CITATIONS
19	Influence of heat treatment on manganese ores as oxygen carriers. International Journal of Greenhouse Gas Control, 2019, 87, 238-245.	4.6	7
20	Effects of the Choice of Gas on the Hydrodynamics of Fluidized Beds. Industrial & Engineering Chemistry Research, 2019, , .	3.7	3
21	Improved Gas–Solids Mass Transfer in Fluidized Beds: Confined Fluidization in Chemical-Looping Combustion. Energy & Fuels, 2019, 33, 4442-4453.	5.1	7
22	Increasing Gas–Solids Mass Transfer in Fluidized Beds by Application of Confined Fluidization—A Feasibility Study. Applied Sciences (Switzerland), 2019, 9, 634.	2.5	7
23	Synthesis and upscaling of perovskite Mn-based oxygen carrier by industrial spray drying route. International Journal of Greenhouse Gas Control, 2018, 70, 68-75.	4.6	23
24	Chemical looping combustion of four different solid fuels using a manganese-silicon-titanium oxygen carrier. International Journal of Greenhouse Gas Control, 2018, 70, 88-96.	4.6	28
25	Chemical-looping technologies using circulating fluidized bed systems: Status of development. Fuel Processing Technology, 2018, 172, 1-12.	7.2	172
26	Oxygen release from manganese ores relevant for chemical looping with oxygen uncoupling conditions. Fuel, 2018, 232, 693-703.	6.4	25
27	Exploring novel hydrogen production processes by integration of steam methane reforming with chemical-looping combustion (CLC-SMR) and oxygen carrier aided combustion (OCAC-SMR). International Journal of Greenhouse Gas Control, 2018, 74, 28-39.	4.6	40
28	Chemical-Looping Combustion of Kerosene and Gaseous Fuels with a Natural and a Manufactured Mn–Fe-Based Oxygen Carrier. Energy & Fuels, 2018, 32, 8803-8816.	5.1	25
29	Manganese ores as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). Journal of Environmental Chemical Engineering, 2017, 5, 2552-2563.	6.7	42
30	Estimating the solids circulation rate in a 100-kW chemical looping combustor. Chemical Engineering Science, 2017, 171, 351-359.	3.8	14
31	The EU-FP7 Project SUCCESS – Scale-up of Oxygen Carrier for Chemical Looping Combustion using Environmentally Sustainable Materials. Energy Procedia, 2017, 114, 395-406.	1.8	21
32	Chemical-Looping Combustion of Solid Fuels – Status and Recent Progress. Energy Procedia, 2017, 114, 371-386.	1.8	76
33	Negative CO2 Emissions with Chemical-Looping Combustion of Biomass – A Nordic Energy Research Flagship Project. Energy Procedia, 2017, 114, 6074-6082.	1.8	39
34	Modeling and scale analysis of gaseous fuel reactors in chemical looping combustion systems. Particuology, 2017, 35, 31-41.	3.6	10
35	Chemical-looping combustion with heavy liquid fuels in a 10 kW pilotÂplant. Fuel Processing Technology, 2017, 156, 124-137.	7.2	39
36	Effect of Production Parameters on the Spray-Dried Calcium Manganite Oxygen Carriers for Chemical-Looping Combustion. Energy & Fuels, 2016, 30, 3257-3268.	5.1	14

#	Article	IF	CITATIONS
37	Investigation of a calcium manganite as oxygen carrier during 99 h of operation of chemical-looping combustion in a 10 kW th reactor unit. International Journal of Greenhouse Gas Control, 2016, 53, 222-229.	4.6	47
38	Enhanced performance of manganese ore as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU) by combination with Ca(OH)2 through spray-drying. Journal of Environmental Chemical Engineering, 2016, 4, 3707-3717.	6.7	11
39	Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation. Applied Energy, 2016, 163, 41-50.	10.1	51
40	Chemical-looping combustion in a 100-kW unit using a mixture of ilmenite and manganese ore as oxygen carrier. Fuel, 2016, 166, 533-542.	6.4	91
41	Development of CaMn0.775Mg0.1Ti0.125O3-δoxygen carriers produced from different Mn and Ti sources. Materials and Design, 2016, 89, 527-542.	7.0	26
42	Experimental investigation of binary and ternary combined manganese oxides for chemical-looping with oxygen uncoupling (CLOU). Fuel, 2016, 164, 228-236.	6.4	23
43	Chemical Looping Combustion: an Emerging Carbon Capture Technology. , 2015, , .		0
44	Screening of Combined Mn-Fe-Si Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU). Energy & Fuels, 2015, 29, 1868-1880.	5.1	19
45	Emerging CO2 capture systems. International Journal of Greenhouse Gas Control, 2015, 40, 126-166.	4.6	352
46	Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control, 2015, 43, 179-188.	4.6	70
47	Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control, 2015, 34, 12-24.	4.6	34
48	A 1000 MWth boiler for chemical-looping combustion of solid fuels – Discussion of design and costs. Applied Energy, 2015, 157, 475-487.	10.1	210
49	Chemical-looping combustion using combined iron/manganese/silicon oxygen carriers. Applied Energy, 2015, 157, 330-337.	10.1	29
50	Screening of supported and unsupported Mn–Si oxygen carriers for CLOU (chemical-looping with) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
51	id="M1"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>C</mml:mtext><mml:mtext>a</mml:mtext><mr mathvariant="bold">3<mml:mo mathvariant="bold">â^'</mml:mo><mml:mi mathvariant="bold-italic">î/</mml:mi </mr </mml:mrow></mml:msub></mml:mrow> <td>nl:mtext>1 2.4</td> <td>N29</td>	nl:mtext>1 2.4	N29
52	Engineering, 2014, 2014, 1-9 CaMnO3-1 [°] Made from Low Cost Material Examined as Oxygen Carrier in Chemical-looping Combustion. Energy Procedia, 2014, 63, 80-86.	1.8	26
53	Sulfur Tolerance and Rate of Oxygen Release of Combined Mn–Si Oxygen Carriers in Chemical-Looping with Oxygen Uncoupling (CLOU). Industrial & Engineering Chemistry Research, 2014, 53, 19488-19497.	3.7	14
54	Material balances of carbon, sulfur, nitrogen and ilmenite in a 100kW CLC reactor system.	4.6	65

International Journal of Greenhouse Gas Control, 2014, 27, 188-202.

#	Article	IF	CITATIONS
55	Measuring attrition resistance of oxygen carrier particles for chemical looping combustion with a customized jet cup. Powder Technology, 2014, 256, 75-86.	4.2	143
56	Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Applied Energy, 2014, 113, 1883-1894.	10.1	124
57	Production and examination of oxygen arrier materials based on manganese ores and Ca(OH) ₂ in chemical looping with oxygen uncoupling. AICHE Journal, 2014, 60, 645-656.	3.6	30
58	Chemical-looping combustion of solid fuels – Status of development. Applied Energy, 2014, 113, 1869-1873.	10.1	336
59	Carbon capture and storage update. Energy and Environmental Science, 2014, 7, 130-189.	30.8	1,765
60	Mn–Fe Oxides with Support of MgAl ₂ O ₄ , CeO ₂ , ZrO ₂ and Y ₂ O ₃ –ZrO ₂ for Chemical-Looping Combustion and Chemical-Looping with Oxygen Uncoupling. Industrial & Engineering Chemistry Research, 2014, 53, 10358-10365.	3.7	44
61	(Fe1-xMnx)TiyO3 based Oxygen Carriers for Chemical-looping Combustion and Chemical-looping with Oxygen Uncoupling. Energy Procedia, 2014, 51, 85-98.	1.8	21
62	CuO-Based Oxygen-Carrier Particles for Chemical-Looping with Oxygen Uncoupling – Experiments in Batch Reactor and in Continuous Operation. Industrial & Engineering Chemistry Research, 2014, 53, 6255-6267.	3.7	54
63	Sulfur Tolerance of Ca _{<i>x</i>} Mn _{1–<i>y</i>} M _{<i>y</i>} O _{3â^îî} (M = Mg, Ti) Perovskite-Type Oxygen Carriers in Chemical-Looping with Oxygen Uncoupling (CLOU). Energy & Fuels. 2014. 28. 1312-1324.	5.1	37
64	Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant. Energy & Fuels, 2014, 28, 5978-5987.	5.1	37
65	Use of Low-Volatile Solid Fuels in a 100 kW Chemical-Looping Combustor. Energy & Fuels, 2014, 28, 5942-5952.	5.1	60
66	Examination of oxygen uncoupling behaviour and reactivity towards methane for manganese silicate oxygen carriers in chemical-looping combustion. International Journal of Greenhouse Gas Control, 2014, 29, 70-81.	4.6	35
67	The use of ilmenite as oxygen carrier with kerosene in a 300 W CLC laboratory reactor with continuous circulation. Applied Energy, 2014, 113, 1846-1854.	10.1	58
68	Operation of a 100 kW chemical-looping combustor with Mexican petroleum coke and Cerrejón coal. Applied Energy, 2014, 113, 1830-1835.	10.1	82
69	Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling. Applied Energy, 2014, 113, 1924-1932.	10.1	218
70	Investigation of Manganese–Iron Oxide Materials based on Manganese Ores as Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU). Energy Technology, 2014, 2, 469-479.	3.8	16
71	Combined oxides of iron, manganese and silica as oxygen carriers for chemical-looping combustion. Fuel Processing Technology, 2014, 124, 87-96.	7.2	29
72	Chemical-looping Combustion of Solid Fuels – Technology Overview and Recent Operational Results in 100 kW Unit. Energy Procedia, 2014, 63, 98-112.	1.8	34

#	Article	IF	CITATIONS
73	Innovative Oxygen Carriers Uplifting Chemical-looping Combustion. Energy Procedia, 2014, 63, 113-130.	1.8	50
74	Chemical Looping Combustion of Sulphurous Solid Fuels Using Spray-dried Calcium Manganate Particles as Oxygen Carrier. Energy Procedia, 2014, 63, 140-152.	1.8	36
75	Operation with Combined Oxides of Manganese and Silica as Oxygen Carriers in a 300 Wth Chemical-looping Combustion Unit. Energy Procedia, 2014, 63, 131-139.	1.8	5
76	(<scp>Mn_zFe_{1—z})_yO_x</scp> combined oxides as oxygen carrier for chemicalâ€looping with oxygen uncoupling. AICHE Journal, 2013, 59, 582-588.	3.6	73
77	ZrO2-Supported CuO Oxygen Carriers for Chemical-Looping with Oxygen Uncoupling (CLOU). Energy Procedia, 2013, 37, 550-559.	1.8	14
78	The Effect of Bituminous and Lignite Ash on the Performance of Ilmenite as Oxygen Carrier in Chemical‣ooping Combustion. Chemical Engineering and Technology, 2013, 36, 1460-1468.	1.5	46
79	Fuel reactor model validation: Assessment of the key parameters affecting the chemical-looping combustion of coal. International Journal of Greenhouse Gas Control, 2013, 19, 541-551.	4.6	59
80	Chemical-looping combustion of solid fuels – Design and operation of a 100 kW unit with bituminous coal. International Journal of Greenhouse Gas Control, 2013, 15, 150-162.	4.6	182
81	Chemical-Looping Combustion with Liquid Fuels. Energy Procedia, 2013, 37, 654-661.	1.8	23
82	Analytical model of gas conversion in a 100kW chemical-looping combustor for solid fuels—Comparison with operational results. Chemical Engineering Science, 2013, 96, 131-141.	3.8	32
83	Chemical-Looping Combustion of Solid Fuels — Operational Experiences in 100kW Dual Circulating Fluidized Bed System. Energy Procedia, 2013, 37, 608-617.	1.8	9
84	Innovative Oxygen Carrier Materials for Chemical-Looping Combustion. Energy Procedia, 2013, 37, 645-653.	1.8	28
85	Chemical-looping combustion of solid fuels in a 10 kW reactor system using natural minerals as oxygen carrier. Energy Procedia, 2013, 37, 598-607.	1.8	37
86	CaMn _{0.9} Mg _{0.1} O _{3-δ} as Oxygen Carrier in a Gas-Fired 10 kW _{th} Chemical-Looping Combustion Unit. Industrial & Engineering Chemistry Research, 2013, 52, 6923-6932.	3.7	92
87	On the highâ€gasification rate of Brazilian manganese ore in chemicalâ€looping combustion (CLC) for solid fuels. AICHE Journal, 2013, 59, 4346-4354.	3.6	26
88	Chemical Looping Combustion and Chemical Looping with Oxygen Uncoupling Experiments in a Batch Reactor Using Spray-Dried CaMn _{1–<i>x</i>} M _{<i>x</i>} O _{3â~î´} (M = Ti,)	Tj E ∄ QqO () 0 %88T /Over
89	Investigation of Different Mn–Fe Oxides as Oxygen Carrier for Chemical-Looping with Oxygen Uncoupling (CLOU). Energy & Fuels, 2013, 27, 367-377.	5.1	116
90	Investigation of Combined Supports for Cu-Based Oxygen Carriers for Chemical-Looping with Oxygen Uncoupling (CLOU). Energy & Fuels, 2013, 27, 3918-3927.	5.1	65

6

#	Article	IF	CITATIONS
91	Examination of Perovskite Structure CaMnO _{3-<i>δ</i>} with MgO Addition as Oxygen Carrier for Chemical Looping with Oxygen Uncoupling Using Methane and Syngas. International Journal of Chemical Engineering, 2013, 2013, 1-16.	2.4	29
92	CaMn _{0.875} Ti _{0.125} O _{3â^'<i>δ</i>} as an Oxygen Carrier for Chemicalâ€Looping with Oxygen Uncoupling (CLOU)—Solidâ€Fuel Testing and Sulfur Interaction. Energy Technology, 2013, 1, 338-344.	3.8	22
93	Evaluation of CuAl ₂ O ₄ as an Oxygen Carrier in Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2012, 51, 13924-13934.	3.7	73
94	Oxygen Release and Oxidation Rates of MgAl ₂ O ₄ -Supported CuO Oxygen Carrier for Chemical-Looping Combustion with Oxygen Uncoupling (CLOU). Energy & Fuels, 2012, 26, 6528-6539.	5.1	75
95	Use of manganese ore in chemical-looping combustion (CLC)—Effect on steam gasification. International Journal of Greenhouse Gas Control, 2012, 8, 56-60.	4.6	54
96	Chemical-looping combustion and chemical-looping reforming of kerosene in a circulating fluidized-bed 300W laboratory reactor. International Journal of Greenhouse Gas Control, 2012, 9, 1-9.	4.6	62
97	Chemical-looping combustion of solid fuels – Operation in a 10kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite. Fuel, 2012, 102, 808-822.	6.4	166
98	Chemical-looping combustion and chemical-looping with oxygen uncoupling of kerosene with Mn- and Cu-based oxygen carriers in a circulating fluidized-bed 300W laboratory reactor. Fuel Processing Technology, 2012, 104, 378-389.	7.2	82
99	Testing of minerals and industrial by-products as oxygen carriers for chemical-looping combustion in a circulating fluidized-bed 300W laboratory reactor. Fuel, 2012, 93, 351-363.	6.4	59
100	Designing and operating a cold-flow model of a 100kW chemical-looping combustor. Powder Technology, 2012, 222, 182-192.	4.2	70
101	Prospects of Al ₂ O ₃ and MgAl ₂ O ₄ -Supported CuO Oxygen Carriers in Chemical-Looping Combustion (CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU). Energy & Fuels, 2011, 25, 5493-5502.	5.1	133
102	Influence of Lime Addition to Ilmenite in Chemical-Looping Combustion (CLC) with Solid Fuels. Energy & Fuels, 2011, 25, 3843-3853.	5.1	44
103	Influence of Limestone Addition in a 10 kW _{th} Chemical-Looping Combustion Unit Operated with Petcoke. Energy & Fuels, 2011, 25, 4818-4828.	5.1	59
104	A method for determination of reaction enthalpy of oxygen carriers for chemical looping combustion – Application to ilmenite. Thermochimica Acta, 2011, 524, 62-67.	2.7	18
105	Reactivity of a spray-dried NiO/NiAl2O4 oxygen carrier for chemical-looping combustion. Chemical Engineering Science, 2011, 66, 4636-4644.	3.8	46
106	Casification inhibition in chemical-looping combustion with solid fuels. Combustion and Flame, 2011, 158, 393-400.	5.2	83
107	Combined manganese/iron oxides as oxygen carrier for chemical looping combustion with oxygen uncoupling (CLOU) in a circulating fluidized bed reactor system. Energy Procedia, 2011, 4, 341-348.	1.8	105
108	Chemical-looping with oxygen uncoupling using combined Mn-Fe oxides, testing in batch fluidized bed. Energy Procedia, 2011, 4, 370-377.	1.8	84

#	Article	IF	CITATIONS
109	Chemical-looping combustion of solid fuels in a 10ÂkWth pilot–batch tests with five fuels. Energy Procedia, 2011, 4, 385-392.	1.8	29
110	Chemical – Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers – Oxygen release and reactivity with methane. Fuel, 2011, 90, 941-950.	6.4	109
111	CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system. International Journal of Greenhouse Gas Control, 2011, 5, 356-366.	4.6	132
112	The application of a multistage-bed model for residence-time analysis in chemical-looping combustion of solid fuel. Chemical Engineering Science, 2010, 65, 5055-5066.	3.8	42
113	Effect of fuel particle size on reaction rate in chemical looping combustion. Chemical Engineering Science, 2010, 65, 5841-5851.	3.8	13
114	Investigation of NiO-based mixed oxides in a 300-W chemical-looping combustor. Chemical Engineering Research and Design, 2010, 88, 661-672.	5.6	46
115	On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC). Chemical Engineering Research and Design, 2010, 88, 1505-1514.	5.6	95
116	Fe ₂ O ₃ on Ceâ€, Caâ€, or Mgâ€stabilized ZrO ₂ as oxygen carrier for chemicalâ€looping combustion using NiO as additive. AICHE Journal, 2010, 56, 2211-2220.	3.6	22
117	Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion. Fuel, 2010, 89, 3399-3409.	6.4	88
118	Batch testing of solid fuels with ilmenite in a 10kWth chemical-looping combustor. Fuel, 2010, 89, 1749-1762.	6.4	66
119	llmenite with addition of NiO as oxygen carrier for chemical-looping combustion. Fuel, 2010, 89, 3523-3533.	6.4	68
120	Investigation of NiO/NiAl2O4 oxygen carriers for chemical-looping combustion produced by spray-drying. International Journal of Greenhouse Gas Control, 2010, 4, 23-35.	4.6	61
121	Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel, 2009, 88, 683-690.	6.4	208
122	Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel. Fuel, 2009, 88, 2083-2096.	6.4	172
123	Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers. Fuel, 2009, 88, 1945-1954.	6.4	150
124	Chemical-looping with oxygen uncoupling for combustion of solid fuels. International Journal of Greenhouse Gas Control, 2009, 3, 11-19.	4.6	554
125	Waste products from the steel industry with NiO as additive as oxygen carrier for chemical-looping combustion. International Journal of Greenhouse Gas Control, 2009, 3, 693-703.	4.6	30
126	Solid fuels in chemical-looping combustion using a NiO-based oxygen carrier. Chemical Engineering Research and Design, 2009, 87, 1543-1550.	5.6	69

#	Article	IF	CITATIONS
127	Natural minerals as oxygen carriers for chemical looping combustion in a dual circulating fluidized bed system. Energy Procedia, 2009, 1, 27-34.	1.8	125
128	Operation in a 10ÂkWth chemical-looping combustor for solid fuel—Testing with a Mexican petroleum coke. Energy Procedia, 2009, 1, 407-414.	1.8	56
129	Using chemical-looping with oxygen uncoupling (CLOU) for combustion of six different solid fuels. Energy Procedia, 2009, 1, 447-453.	1.8	128
130	NiO particles with Ca and Mg based additives produced by spray- drying as oxygen carriers for chemical-looping combustion. Energy Procedia, 2009, 1, 479-486.	1.8	53
131	Chemical-looping Combustion CO2 Ready Gas Power. Energy Procedia, 2009, 1, 1557-1564.	1.8	30
132	High temperature behavior of NiO-based oxygen carriers for Chemical Looping Combustion. Energy Procedia, 2009, 1, 3885-3892.	1.8	51
133	Investigation of Different NiO/NiAl ₂ O ₄ Particles as Oxygen Carriers for Chemical-Looping Combustion. Energy & Fuels, 2009, 23, 665-676.	5.1	61
134	Use of CaMn _{0.875} Ti _{0.125} O ₃ as Oxygen Carrier in Chemical-Looping with Oxygen Uncoupling. Energy & Fuels, 2009, 23, 5276-5283.	5.1	151
135	Manganese/Iron, Manganese/Nickel, and Manganese/Silicon Oxides Used in Chemical-Looping With Oxygen Uncoupling (CLOU) for Combustion of Methane. Energy & Fuels, 2009, 23, 5269-5275.	5.1	188
136	Chemical-Looping Combustion of Petroleum Coke Using Ilmenite in a 10 kW _{th} Unitâ~'High-Temperature Operation. Energy & Fuels, 2009, 23, 5257-5268.	5.1	124
137	High Reactivity and Mechanical Durability of NiO/NiAl ₂ O ₄ and NiO/NiAl ₂ O ₄ /MgAl ₂ O ₄ Oxygen Carrier Particles Used for more than 1000 h in a 10 kW CLC Reactor. Industrial & amp; Engineering Chemistry Research, 2009, 48, 7400-7405.	3.7	56
138	Use of Ores and Industrial Products As Oxygen Carriers in Chemical-Looping Combustion. Energy & amp; Fuels, 2009, 23, 2307-2315.	5.1	150
139	NiO supported on Mg–ZrO2 as oxygen carrier for chemical-looping combustion and chemical-looping reforming. Energy and Environmental Science, 2009, 2, 970.	30.8	98
140	The use of ilmenite as an oxygen carrier in chemical-looping combustion. Chemical Engineering Research and Design, 2008, 86, 1017-1026.	5.6	308
141	Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1â^'xFeyCo1â^'yO3â^´Î perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4. International Journal of Greenhouse Gas Control, 2008, 2, 21-36.	4.6	222
142	Solid fuels in chemical-looping combustion. International Journal of Greenhouse Gas Control, 2008, 2, 180-193.	4.6	312
143	The reaction of NiO/NiAl ₂ O ₄ particles with alternating methane and oxygen. Canadian Journal of Chemical Engineering, 2008, 86, 756-767.	1.7	39
144	Using continuous and pulse experiments to compare two promising nickel-based oxygen carriers for use in chemical-looping technologies. Fuel, 2008, 87, 988-1001.	6.4	84

#	Article	IF	CITATIONS
145	Design and operation of a 10kWth chemical-looping combustor for solid fuels – Testing with South African coal. Fuel, 2008, 87, 2713-2726.	6.4	376
146	160h of chemical-looping combustion in a 10kW reactor system with a NiO-based oxygen carrier. International Journal of Greenhouse Gas Control, 2008, 2, 520-530.	4.6	166
147	Chemical-Looping Combustion and Chemical-Looping Reforming in a Circulating Fluidized-Bed Reactor Using Ni-Based Oxygen Carriers. Energy & Fuels, 2008, 22, 2585-2597.	5.1	179
148	The use of iron oxide as oxygen carrier in a chemical-looping reactor. Fuel, 2007, 86, 1021-1035.	6.4	284
149	The use of petroleum coke as fuel in chemical-looping combustion. Fuel, 2007, 86, 1947-1958.	6.4	266
150	Chemical-looping combustion using syngas as fuel. International Journal of Greenhouse Gas Control, 2007, 1, 158-169.	4.6	139
151	Defluidization Conditions for a Fluidized Bed of Iron Oxide-, Nickel Oxide-, and Manganese Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2006, 45, 968-977.	3.7	116
152	Creating a Synergy Effect by Using Mixed Oxides of Iron- and Nickel Oxides in the Combustion of Methane in a Chemical-Looping Combustion Reactor. Energy & Fuels, 2006, 20, 2399-2407.	5.1	110
153	Comparison of oxygen carriers for chemical-looping combustion. Thermal Science, 2006, 10, 93-107.	1.1	93
154	The use of NiO as an oxygen carrier in chemical-looping combustion. Fuel, 2006, 85, 736-747.	6.4	277
155	Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier. Fuel, 2006, 85, 1174-1185.	6.4	259
156	A 300W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel, 2006, 85, 1428-1438.	6.4	139
157	Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel, 2006, 85, 1631-1641.	6.4	236
158	Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-Looping Combustor. Industrial & Engineering Chemistry Research, 2006, 45, 5911-5919.	3.7	77
159	Investigation of Mn3O4 With Stabilized ZrO2 for Chemical-Looping Combustion. Chemical Engineering Research and Design, 2006, 84, 807-818.	5.6	140
160	Thermal Analysis of Chemical-Looping Combustion. Chemical Engineering Research and Design, 2006, 84, 795-806.	5.6	377
161	Combustion of Syngas and Natural Gas in a 300 W Chemical-Looping Combustor. Chemical Engineering Research and Design, 2006, 84, 819-827.	5.6	137
162	Construction and 100 h of Operational Experience of A 10-kW Chemical-Looping Combustor. , 2005, , 625-645.		73

#	Article	IF	CITATIONS
163	Design and Fluid Dynamic Analysis of a Bench-Scale Combustion System with CO2Separationâ°'Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2005, 44, 546-556.	3.7	104
164	Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2005, 44, 668-676.	3.7	206
165	Multicycle Reduction and Oxidation of Different Types of Iron Oxide ParticlesApplication to Chemical-Looping Combustion. Energy & amp; Fuels, 2004, 18, 628-637.	5.1	260
166	Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel, 2004, 83, 1215-1225.	6.4	550
167	Investigation of Fe2O3with MgAl2O4for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2004, 43, 6978-6987.	3.7	183
168	Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion. Powder Technology, 2003, 134, 210-217.	4.2	82
169	Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and OxygenApplication for Chemical-Looping Combustion. Energy & Fuels, 2003, 17, 643-651.	5.1	294
170	Optimization of emissions from fluidized bed combustion of coal, biofuel and waste. International Journal of Energy Research, 2002, 26, 1191-1202.	4.5	26
171	A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science, 2001, 56, 3101-3113.	3.8	927
172	The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel, 2001, 80, 1953-1962.	6.4	354
173	Methods for measuring the concentrations of SO ₂ , and of gaseous reduced sulphur compounds in the combustion chamber of a circulating fluidized bed boiler. Canadian Journal of Chemical Engineering, 2000, 78, 1138-1144.	1.7	8
174	Reaction between Limestone and SO2under Conditions Alternating between Oxidizing and Reducing. The Effect of Short Cycle Times. Energy & Fuels, 2000, 14, 654-662.	5.1	13
175	The reaction between limestone and SO2 under periodically changing oxidizing and reducing conditions – effect of temperature and limestone type. Thermochimica Acta, 1999, 325, 59-67.	2.7	16
176	Sulphur capture in circulating fluidized-bed boilers: can the efficiency be predicted?. Chemical Engineering Science, 1999, 54, 5573-5584.	3.8	39
177	A sulphur capture model for circulating fluidized-bed boilers. Chemical Engineering Science, 1998, 53, 1163-1173.	3.8	43
178	Ash behaviour in a CFB boiler during combustion of coal, peat or wood. Fuel, 1998, 77, 65-70.	6.4	61
179	Reversed air staging $\hat{a} \in$ " a method for reduction of N2O emissions from fluidized bed combustion of coal. Fuel, 1998, 77, 953-959.	6.4	39
180	A method of evaluating limestone reactivity with SO ₂ under fluidized bed combustion conditions. Canadian Journal of Chemical Engineering, 1998, 76, 762-770.	1.7	16

#	Article	IF	CITATIONS
181	Reaction between Sulfur Dioxide and Limestone under Periodically Changing Oxidizing and Reducing ConditionsEffect of Cycle Time. Energy & Fuels, 1998, 12, 905-912.	5.1	31
182	Methods for reducing the emission of nitrous oxide from fluidized bed combustion. Energy Conversion and Management, 1996, 37, 1297-1302.	9.2	19
183	Calcium sulphide formation in fluidized bed boilers. Canadian Journal of Chemical Engineering, 1995, 73, 228-233.	1.7	10
184	Obtaining Low N2O, NO, and SO2 Emissions from Circulating Fluidized Bed Boilers by Reversing the Air Staging Conditions. Energy & Fuels, 1995, 9, 386-387.	5.1	13
185	REDUCTION OF N2O EMISSIONS FROM FLUIDISED BED COMBUSTION BY REVERSED AIR STAGING. , 1995, , 89-100.		2
186	Model of sulphur capture in fluidised-bed boilers under conditions changing between oxidising and reducing. Chemical Engineering Science, 1993, 48, 1131-1141.	3.8	17
187	SO2 capture and N2O reduction in a circulating fluidized-bed boiler: influence of temperature and air staging. Fuel, 1993, 72, 1553-1561.	6.4	38
188	Dependence of Sulphur Capture Performance on Air Staging in a 12 MW Circulating Fluidised Bed Boiler. , 1993, , 470-491.		11
189	Residence time distribution of sorbent particles in a circulating fluidised bed boiler. Powder Technology, 1992, 70, 285-292.	4.2	14
190	SO2 capture fluidised-bed boilers: re-emission of SO2 due to reduction of CaSO4. Chemical Engineering Science, 1989, 44, 207-213.	3.8	97
191	Sulphur capture in fluidized bed boilers: The effect of reductive decomposition of CaSO4. The Chemical Engineering Journal, 1989, 40, 59-69.	0.3	43
192	Performance of Combined Manganese–Silicon Oxygen Carriers and Effects of Including Titanium. Energy & Fuels, 0, , .	5.1	4
193	Chemical-Looping Combustion of Solid Fuels Using Manganese Ores as Oxygen Carriers. Energy & Fuels, 0, , .	5.1	19
194	Chemical-Looping Combustion (Clc) of Solid Fuels (Clc-Sf) - a Discussion of Operational Experiences, Costs, Upscaling Strategies and Negative Emissions (Bio-Clc). SSRN Electronic Journal, 0, , .	0.4	1
195	Investigation on the Performance of Volatile Distributors with Different Configurations under Different Fluidization Regimes. Energy & Fuels, 0, , .	5.1	1