## Amanda K Lukens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6970047/publications.pdf Version: 2024-02-01



AMANDA K LUKENS

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chemical Biology, 2022, 29, 824-839.e6.                           | 2.5  | 14        |
| 2  | Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.                                               | 2.5  | 39        |
| 3  | Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Communications Biology, 2022, 5, 128.                                     | 2.0  | 8         |
| 4  | MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.                                                                                                             | 1.5  | 51        |
| 5  | Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.                                                                                  | 1.8  | 35        |
| 6  | The Adaptive Proline Response in <i>P. falciparum</i> Is Independent of <i>Pf</i> elK1 and elF2α Signaling.<br>ACS Infectious Diseases, 2019, 5, 515-520.                                          | 1.8  | 5         |
| 7  | In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in<br>a mouse infection model. Science Translational Medicine, 2019, 11, .                      | 5.8  | 30        |
| 8  | Identification of Collateral Sensitivity to Dihydroorotate Dehydrogenase Inhibitors in <i>Plasmodium falciparum</i> . ACS Infectious Diseases, 2018, 4, 508-515.                                   | 1.8  | 15        |
| 9  | Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics.<br>Science, 2018, 359, 191-199.                                                                       | 6.0  | 194       |
| 10 | Quantitative Proteomic Profiling Reveals Novel Plasmodium falciparum Surface Antigens and Possible<br>Vaccine Candidates. Molecular and Cellular Proteomics, 2018, 17, 43-60.                      | 2.5  | 29        |
| 11 | Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science, 2018, 362, .                                                                                   | 6.0  | 99        |
| 12 | Intramolecular Diazaâ€Diels–Alder Protocol: A New Diastereoselective and Modular Oneâ€6tep Synthesis<br>of Constrained Polycyclic Frameworks. Chemistry - A European Journal, 2017, 23, 4137-4148. | 1.7  | 15        |
| 13 | Genome-Wide Association Studies of Drug-Resistance Determinants. Trends in Parasitology, 2017, 33, 214-230.                                                                                        | 1.5  | 16        |
| 14 | New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections. Scientific Reports, 2016, 6, 29179.                                           | 1.6  | 40        |
| 15 | <i>Plasmodium falciparum</i> Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for<br>Two Distinct Compound Classes. ACS Infectious Diseases, 2016, 2, 816-826.                       | 1.8  | 34        |
| 16 | Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538, 344-349.                                                                                          | 13.7 | 214       |
| 17 | Probing the Azaaurone Scaffold against the Hepatic and Erythrocytic Stages of Malaria Parasites.<br>ChemMedChem, 2016, 11, 2194-2204.                                                              | 1.6  | 23        |
| 18 | A broad analysis of resistance development in the malaria parasite. Nature Communications, 2016, 7, 11901.                                                                                         | 5.8  | 94        |

Amanda K Lukens

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Diversity-Oriented Synthesis Probe TargetsPlasmodium falciparumCytochrome b Ubiquinone<br>Reduction Site and Synergizes With Oxidation Site Inhibitors. Journal of Infectious Diseases, 2015, 211,<br>1097-1103.                                 | 1.9  | 29        |
| 20 | The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Science Translational Medicine, 2015, 7, 288ra77.                                                                          | 5.8  | 82        |
| 21 | Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype. European Journal of Medicinal Chemistry, 2015, 102, 320-333.                                                                                                | 2.6  | 31        |
| 22 | Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate. Nature Communications, 2015, 6, 6715.                                                                                                                      | 5.8  | 55        |
| 23 | Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell, 2015, 162, 738-750.                                                                                                                                                     | 13.5 | 230       |
| 24 | Harnessing evolutionary fitness in <i>Plasmodium falciparum</i> for drug discovery and suppressing resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 799-804.                              | 3.3  | 54        |
| 25 | Diversity-Oriented Synthesis-Facilitated Medicinal Chemistry: Toward the Development of Novel<br>Antimalarial Agents. Journal of Medicinal Chemistry, 2014, 57, 8496-8502.                                                                       | 2.9  | 33        |
| 26 | Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents. Journal of Medicinal<br>Chemistry, 2014, 57, 5702-5713.                                                                                                              | 2.9  | 24        |
| 27 | Polymorphism in dhfr/dhps genes, parasite density and ex vivo response to pyrimethamine in<br>Plasmodium falciparum malaria parasites in Thies, Senegal. International Journal for Parasitology:<br>Drugs and Drug Resistance, 2013, 3, 135-142. | 1.4  | 27        |
| 28 | Genetic Surveillance Detects Both Clonal and Epidemic Transmission of Malaria following Enhanced<br>Intervention in Senegal. PLoS ONE, 2013, 8, e60780.                                                                                          | 1.1  | 87        |
| 29 | SNP Genotyping Identifies New Signatures of Selection in a Deep Sample of West African Plasmodium falciparum Malaria Parasites. Molecular Biology and Evolution, 2012, 29, 3249-3253.                                                            | 3.5  | 41        |
| 30 | Sequence-based association and selection scans identify drug resistance loci in the <i>Plasmodium falciparum</i> malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13052-13057.      | 3.3  | 99        |
| 31 | Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria. ACS Medicinal Chemistry Letters, 2012, 3, 112-117.                                                                                                                | 1.3  | 52        |
| 32 | Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in<br>Plasmodium falciparum. PLoS Genetics, 2011, 7, e1001383.                                                                                     | 1.5  | 85        |
| 33 | Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparumpopulation divergence. Genome Biology, 2008, 9, R171.                                                                                                | 3.8  | 119       |
| 34 | A genome-wide map of diversity in Plasmodium falciparum. Nature Genetics, 2007, 39, 113-119.                                                                                                                                                     | 9.4  | 320       |
| 35 | In Vivo Transcriptome ofPlasmodium falciparumReveals Overexpression of Transcripts That Encode<br>Surface Proteins. Journal of Infectious Diseases, 2005, 191, 1196-1203.                                                                        | 1.9  | 92        |
| 36 | Intrinsic susceptibility of mouse trophoblasts to natural killer cell-mediated attack in vivo.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16940-16945.                                        | 3.3  | 29        |