
Sanne Boesveldt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6969968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	2.0	375
2	Prevalence of smell loss in Parkinson's disease – A multicenter study. Parkinsonism and Related Disorders, 2009, 15, 490-494.	2.2	329
3	Anosmia—A Clinical Review. Chemical Senses, 2017, 42, 513-523.	2.0	253
4	Central Processing of the Chemical Senses: An Overview. ACS Chemical Neuroscience, 2011, 2, 5-16.	3.5	193
5	Identification of human gustatory cortex by activation likelihood estimation. Human Brain Mapping, 2011, 32, 2256-2266.	3.6	176
6	The Differential Role of Smell and Taste For Eating Behavior. Perception, 2017, 46, 307-319.	1.2	164
7	A comparative study of odor identification and odor discrimination deficits in Parkinson's disease. Movement Disorders, 2008, 23, 1984-1990.	3.9	127
8	Methods for building an inexpensive computer-controlled olfactometer for temporally-precise experiments. International Journal of Psychophysiology, 2010, 78, 179-189.	1.0	124
9	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	2.0	119
10	Gustatory and olfactory dysfunction in older adults: a national probability study. Rhinology, 2011, 49, 324-330.	1.3	109
11	The fish is bad: Negative food odors elicit faster and more accurate reactions than other odors. Biological Psychology, 2010, 84, 313-317.	2.2	93
12	An E-Liquid Flavor Wheel: A Shared Vocabulary Based on Systematically Reviewing E-Liquid Flavor Classifications in Literature. Nicotine and Tobacco Research, 2019, 21, 1310-1319.	2.6	90
13	The 40-item Monell Extended Sniffin' Sticks Identification Test (MONEX-40). Journal of Neuroscience Methods, 2012, 205, 10-16.	2.5	75
14	Food Odours Direct Specific Appetite. Foods, 2016, 5, 12.	4.3	75
15	Odors: appetizing or satiating? Development of appetite during odor exposure over time. International Journal of Obesity, 2014, 38, 650-656.	3.4	74
16	Dynamics of autonomic nervous system responses and facial expressions to odors. Frontiers in Psychology, 2014, 5, 110.	2.1	69
17	The changing role of the senses in food choice and food intake across the lifespan. Food Quality and Preference, 2018, 68, 80-89.	4.6	67
18	The importance of the olfactory system in human well-being, through nutrition and social behavior. Cell and Tissue Research, 2021, 383, 559-567.	2.9	67

#	Article	IF	CITATIONS
19	Human protein status modulates brain reward responses to food cues. American Journal of Clinical Nutrition, 2014, 100, 113-122.	4.7	64
20	The relation between continuous and discrete emotional responses to food odors with facial expressions and non-verbal reports. Food Quality and Preference, 2016, 48, 130-137.	4.6	62
21	Differences in dietary intake during chemotherapy in breast cancer patients compared to women without cancer. Supportive Care in Cancer, 2017, 25, 2581-2591.	2.2	61
22	Impact of ambient odors on food intake, saliva production and appetite ratings. Physiology and Behavior, 2017, 174, 35-41.	2.1	60
23	Optimizing odor identification testing as quick and accurate diagnostic tool for Parkinson's disease. Movement Disorders, 2016, 31, 1408-1413.	3.9	55
24	The influence of olfactory impairment in vital, independently living older persons on their eating behaviour and food liking. Food Quality and Preference, 2014, 38, 30-39.	4.6	54
25	Loss of Olfactory Function and Nutritional Status in Vital Older Adults and Geriatric Patients. Chemical Senses, 2015, 40, 197-203.	2.0	47
26	Comprehensive overview of common e-liquid ingredients and how they can be used to predict an e-liquid's flavour category. Tobacco Control, 2021, 30, 185-191.	3.2	46
27	Taste and smell perception and quality of life during and after systemic therapy for breast cancer. Breast Cancer Research and Treatment, 2018, 170, 27-34.	2.5	45
28	Method to measure autonomic control of cardiac function using time interval parameters from impedance cardiography. Physiological Measurement, 2008, 29, S383-S391.	2.1	44
29	Cross-Cultural Color-Odor Associations. PLoS ONE, 2014, 9, e101651.	2.5	44
30	Signal-to-noise ratio of chemosensory event-related potentials. Clinical Neurophysiology, 2007, 118, 690-695.	1.5	43
31	Altered neural responsivity to food cues in relation to food preferences, but not appetite-related hormone concentrations after RYGB-surgery. Behavioural Brain Research, 2018, 353, 194-202.	2.2	42
32	Food preference and intake in response to ambient odours in overweight and normal-weight females. Physiology and Behavior, 2014, 133, 190-196.	2.1	41
33	Olfactory function and the social lives of older adults: a matter of sex. Scientific Reports, 2017, 7, 45118.	3.3	41
34	Nearly 20 000 e-liquids and 250 unique flavour descriptions: an overview of the Dutch market based on information from manufacturers. Tobacco Control, 2021, 30, 57-62.	3.2	41
35	Sensory-Specific Appetite Is Affected by Actively Smelled Food Odors and Remains Stable Over Time in Normal-Weight Women. Journal of Nutrition, 2014, 144, 1314-1319.	2.9	39
36	Detecting Fat Content of Food from a Distance: Olfactory-Based Fat Discrimination in Humans. PLoS ONE, 2014, 9, e85977.	2.5	36

#	Article	IF	CITATIONS
37	Smelling our appetite? The influence of food odors on congruent appetite, food preferences and intake. Food Quality and Preference, 2020, 85, 103959.	4.6	32
38	Ambient Odor Exposure Affects Food Intake and Sensory Specific Appetite in Obese Women. Frontiers in Psychology, 2019, 10, 7.	2.1	31
39	GC–MS analysis of e-cigarette refill solutions: A comparison of flavoring composition between flavor categories. Journal of Pharmaceutical and Biomedical Analysis, 2020, 188, 113364.	2.8	31
40	The reliability and validity of the Macronutrient and Taste Preference Ranking Task: A new method to measure food preferences. Food Quality and Preference, 2017, 57, 32-40.	4.6	29
41	Altered neural inhibition responses to food cues after Roux-en-Y Gastric Bypass. Biological Psychology, 2018, 137, 34-41.	2.2	28
42	Impact of food odors signaling specific taste qualities and macronutrient content on saliva secretion and composition. Appetite, 2019, 143, 104399.	3.7	28
43	To like or not to like: Neural substrates of subjective flavor preferences. Behavioural Brain Research, 2014, 269, 128-137.	2.2	26
44	Altered food preferences and chemosensory perception during chemotherapy in breast cancer patients: A longitudinal comparison with healthy controls. Food Quality and Preference, 2018, 63, 135-143.	4.6	26
45	E-Liquid Flavor Preferences and Individual Factors Related to Vaping: A Survey among Dutch Never-Users, Smokers, Dual Users, and Exclusive Vapers. International Journal of Environmental Research and Public Health, 2019, 16, 4661.	2.6	26
46	Implicit and Explicit Measurements of Affective Responses to Food Odors. Chemical Senses, 2016, 41, 661-668.	2.0	25
47	Sensory-specific satiety: Added insights from autonomic nervous system responses and facial expressions. Physiology and Behavior, 2017, 170, 12-18.	2.1	25
48	Severity of olfactory deficits is reflected in functional brain networks—An fMRI study. Human Brain Mapping, 2018, 39, 3166-3177.	3.6	25
49	Associations of AD Biomarkers and Cognitive Performance with Nutritional Status: The NUDAD Project. Nutrients, 2019, 11, 1161.	4.1	25
50	Extended testing across, not within, tasks raises diagnostic accuracy of smell testing in Parkinson's disease. Movement Disorders, 2009, 24, 85-90.	3.9	24
51	The impact of chemosensory and food-related changes in patients with advanced oesophagogastric cancer treated with capecitabine and oxaliplatin: a qualitative study. Supportive Care in Cancer, 2016, 24, 3119-26.	2.2	23
52	Food preferences and intake in a population of Dutch individuals with self-reported smell loss: An online survey. Food Quality and Preference, 2020, 79, 103771.	4.6	22
53	Metabolic and Sensory Influences on Odor Sensitivity in Humans. Chemical Senses, 2016, 41, bjv068.	2.0	21
54	Olfactory and gustatory functioning and food preferences of patients with Alzheimer's disease and mild cognitive impairment compared to controls: the NUDAD project. Journal of Neurology, 2020, 267, 144-152.	3.6	21

#	Article	IF	CITATIONS
55	Morphological changes in secondary, but not primary, sensory cortex in individuals with life-long olfactory sensory deprivation. NeuroImage, 2020, 218, 117005.	4.2	19
56	Carbon chain length and the stimulus problem in olfaction. Behavioural Brain Research, 2010, 215, 110-113.	2.2	18
57	Learning to (dis)like: The effect of evaluative conditioning with tastes and faces on odor valence assessed by implicit and explicit measurements. Physiology and Behavior, 2015, 151, 478-484.	2.1	18
58	Flavor perception and the risk of malnutrition in patients with Parkinson's disease. Journal of Neural Transmission, 2018, 125, 925-930.	2.8	18
59	How to quench your thirst. The effect of water-based products varying in temperature and texture, flavour, and sugar content on thirst. Physiology and Behavior, 2017, 180, 45-52.	2.1	16
60	Food Preference and Appetite after Switching between Sweet and Savoury Odours in Women. PLoS ONE, 2016, 11, e0146652.	2.5	16
61	Odour identification and discrimination in Dutch adults over 45 years. Rhinology, 2008, 46, 131-6.	1.3	16
62	Advanced timeâ€series analysis of MEG data as a method to explore olfactory function in healthy controls and Parkinson's disease patients. Human Brain Mapping, 2009, 30, 3020-3030.	3.6	15
63	Sensory analysis of characterising flavours: evaluating tobacco product odours using an expert panel. Tobacco Control, 2019, 28, 152-160.	3.2	15
64	How sweetness intensity and thickness of an oral nutritional supplement affects intake and satiety. Food Quality and Preference, 2019, 71, 406-414.	4.6	15
65	Foraging minds in modern environments: High-calorie and savory-taste biases in human food spatial memory. Appetite, 2020, 152, 104718.	3.7	15
66	The influence of olfactory disgust on (Genital) sexual arousal in men. PLoS ONE, 2019, 14, e0213059.	2.5	14
67	Normal Olfactory Functional Connectivity Despite Lifelong Absence of Olfactory Experiences. Cerebral Cortex, 2021, 31, 159-168.	2.9	13
68	Odor recognition memory is not independently impaired in Parkinson's disease. Journal of Neural Transmission, 2009, 116, 575-578.	2.8	12
69	Sensory Evaluation of E-Liquid Flavors by Smelling and Vaping Yields Similar Results. Nicotine and Tobacco Research, 2020, 22, 798-805.	2.6	12
70	Human spatial memory implicitly prioritizes high-calorie foods. Scientific Reports, 2020, 10, 15174.	3.3	12
71	Achieving Olfactory Expertise: Training for Transfer in Odor Identification. Chemical Senses, 2019, 44, 197-203.	2.0	11
72	Both Nonsmoking Youth and Smoking Adults Like Sweet and Minty E-liquid Flavors More Than Tobacco Flavor. Chemical Senses, 2021, 46, .	2.0	11

#	Article	IF	CITATIONS
73	A stepwise approach investigating salivary responses upon multisensory food cues. Physiology and Behavior, 2020, 226, 113116.	2.1	10
74	Chemosensory perception and food preferences in colorectal cancer patients undergoing adjuvant chemotherapy. Clinical Nutrition ESPEN, 2020, 40, 242-251.	1.2	10
75	Olfactory priming for eating behavior – The influence of non-conscious exposure to food odors on specific appetite, food preferences and intake. Food Quality and Preference, 2021, 90, 104156.	4.6	10
76	Investigating morphological changes in the brain in relation to etiology and duration of olfactory dysfunction with voxel-based morphometry. Scientific Reports, 2021, 11, 12704.	3.3	9
77	Using the Initial Systolic Time Interval to assess cardiac autonomic nervous function in Parkinson's disease. Journal of Electrical Bioimpedance, 2011, 2, 98-101.	0.9	9
78	Time-course of trigeminal versus olfactory stimulation: Evidence from chemosensory evoked potentials. International Journal of Psychophysiology, 2015, 95, 388-394.	1.0	8
79	Olfactory discrimination of fat content in milks is facilitated by differences in volatile compound composition rather than odor intensity. Food Chemistry, 2022, 393, 133357.	8.2	8
80	Low reported taste function is associated with low preference for high protein products in advanced oesophagogastric cancer patients undergoing palliative chemotherapy. Clinical Nutrition, 2019, 38, 472-475.	5.0	7
81	Olfaction and Eating Behavior. , 2017, , 109-110.		6
82	"U-Sniffâ€⊷ the international odor identification test for children: an extension of its normative database and study of global reliability. Rhinology, 2020, 58, 0-0.	1.3	6
83	Seeing Beyond Your Nose? The Effects of Lifelong Olfactory Sensory Deprivation on Cerebral Audio-visual Integration. Neuroscience, 2021, 472, 1-10.	2.3	5
84	Measurement of Olfaction: Screening and Assessment. , 2021, , 45-63.		5
85	Sensory methods to evaluate perception of flavours in tobacco and other nicotine-containing products: a review. Tobacco Control, 2021, , tobaccocontrol-2021-056681.	3.2	5
86	Modulation of event-related potentials to food cues upon sensory-specific satiety. Physiology and Behavior, 2018, 196, 126-134.	2.1	4
87	Does odour priming influence snack choice? – An eye-tracking study to understand food choice processes. Appetite, 2022, 168, 105772.	3.7	4
88	Locating calories: Does the high-calorie bias in human spatial memory influence how we navigate the modern food environment?. Food Quality and Preference, 2021, 94, 104338.	4.6	3
89	Human spatial memory is biased towards high-calorie foods: a cross-cultural online experiment. International Journal of Behavioral Nutrition and Physical Activity, 2022, 19, 14.	4.6	3
90	The association between eating frequency with alertness and gastrointestinal complaints in nurses during the night shift. Journal of Sleep Research, 2021, 30, e13306.	3.2	2

#	Article	IF	CITATIONS
91	Wired for harsh food environments: Human spatial memory favours the effortless location and consumption of high-calorie foods. Food Quality and Preference, 2022, 97, 104478.	4.6	2
92	Responses of the Autonomic Nervous System to Flavors. , 2016, , 249-268.		1
93	The Effect of Food Odor Exposure on Appetite and Nutritional Intake of Older Adults with Dementia. Journal of Nutrition, Health and Aging, 2022, 26, 112-118.	3.3	0