
Ko Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6968927/publications.pdf Version: 2024-02-01

ΚοΥλΜΑΜΟΤΟ

#	Article	IF	CITATIONS
1	Multiscale finite element musculoskeletal model for intact knee dynamics. Computers in Biology and Medicine, 2022, 141, 105023.	7.0	10
2	Humanoid Motion Control by Compliance Optimization Explicitly Considering its Positive Definiteness. IEEE Transactions on Robotics, 2022, 38, 1973-1989.	10.3	0
3	A New Stability Framework for Trajectory Tracking Control of Biped Walking Robots. IEEE Transactions on Industrial Informatics, 2022, 18, 6767-6777.	11.3	8
4	Compliance Optimization Considering Dynamics for Whole-Body Control of a Humanoid. Springer Proceedings in Advanced Robotics, 2022, , 876-889.	1.3	1
5	Transfer Learning of Deep Neural Network Human Pose Estimator by Domain-Specific Data for Video Motion Capturing. , 2022, , .		0
6	Decoupling of Inertia Effect in Angular Momentum of a Humanoid and its Application to Resolved Viscoelasticity Control. , 2022, , .		1
7	Kinematic Differences Between the Dominant and Nondominant Legs During a Single-Leg Drop Vertical Jump in Female Soccer Players. American Journal of Sports Medicine, 2022, 50, 2817-2823.	4.2	7
8	Whole-Body Compliant Motion by Sensor Integration of an EHA-Driven Humanoid <i>Hydra</i> . International Journal of Humanoid Robotics, 2021, 18, 2150002.	1.1	9
9	In vivo kinematical validated knee model for preclinical testing of total knee replacement. Computers in Biology and Medicine, 2021, 132, 104311.	7.0	5
10	Preferred Oil and Ceramics Options for EHA Drive Systems and Computed Torque Control of an EHA-Driven Robot Manipulator. , 2021, , .		4
11	Visualization of Human Motion via Virtual Reality Interface and Interaction based on It. , 2021, , .		1
12	Maximal Output Admissible Set of Foot Position Control in Humanoid Walking. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2021, , 43-51.	0.6	1
13	Dynamics Computation of a Hybrid Multi-link Humanoid Robot Integrating Rigid and Soft Bodies. , 2021, , .		3
14	Comparative study of force control methods for bipedal walking using a force-sensitive hydraulic humanoid. Advanced Robotics, 2020, 34, 1455-1471.	1.8	1
15	Survey on model-based biped motion control for humanoid robots. Advanced Robotics, 2020, 34, 1353-1369.	1.8	20
16	Modeling, prediction, and anomaly detection of manned-vehicle behavior in open field based on velocity vector and variance tensor fields. Advanced Robotics, 2020, 34, 343-357.	1.8	1
17	Development of 3-DOF wrist mechanism for electro-hydrostatically driven robot arm. Advanced Robotics, 2020, 34, 958-973.	1.8	7
18	Experimental Study on Critical Design of Electro-Hydrostatic Actuators Small in Size and Light in Weight. Journal of Robotics and Mechatronics, 2020, 32, 911-922.	1.0	3

Ко Үамамото

#	Article	IF	CITATIONS
19	Experimental Validation of Resolved Viscoelasticity Control on Hydrostatically Driven Humanoid Hydra. Springer Proceedings in Advanced Robotics, 2020, , 619-628.	1.3	1
20	Time-variant feedback controller based on capture point and maximal output admissible set of a humanoid. Advanced Robotics, 2019, 33, 944-955.	1.8	5
21	Resolved Viscoelasticity Control Considering Singularity for Knee-stretched Walking of a Humanoid. , 2019, , .		4
22	Symmetrical cruciate-retaining versus medial pivot prostheses: The effect of intercondylar sagittal conformity on knee kinematics and contact mechanics. Computers in Biology and Medicine, 2019, 108, 101-110.	7.0	17
23	Push Recovery by Angular Momentum Control during 3D Bipedal Walking based on Virtual-mass-ellipsoid Inverted Pendulum Model. , 2019, , .		6
24	Virtual-mass-ellipsoid Inverted Pendulum Model and Its Applications to 3D Bipedal Locomotion on Uneven Terrains. , 2019, , .		9
25	Resolved Multiple Viscoelasticity Control for a Humanoid. IEEE Robotics and Automation Letters, 2018, 3, 44-51.	5.1	18
26	Compliant Biped Locomotion of Hydra, an Electro-Hydrostatically Driven Humanoid. , 2018, , .		18
27	Walking Control of a Humanoid Robot. Journal of the Robotics Society of Japan, 2018, 36, 103-109.	0.1	0
28	A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement. Journal of Biomechanics, 2018, 77, 146-154.	2.1	49
29	Humanoid motion analysis and control based on COG viscoelasticity. Advanced Robotics, 2017, 31, 341-354.	1.8	19
30	Robust walking by resolved viscoelasticity control explicitly considering structure-variability of a humanoid. , 2017, , .		8
31	Resolved Viscoelasticity Control Explicitly Considering Structure-Variability for Humanoids. Journal of the Robotics Society of Japan, 2017, 35, 160-169.	0.1	0
32	Resolved COG viscoelasticity control of a humanoid. , 2016, , .		4
33	Control strategy switching for humanoid robots based on maximal output admissible set. Robotics and Autonomous Systems, 2016, 81, 17-32.	5.1	23
34	Comparison of Theoretical and Measured Forces on Magnetically Propelled Microrobots in a Vascular Phantom. Procedia CIRP, 2016, 49, 157-162.	1.9	0
35	Maximal Output Admissible set for limit cycle controller of humanoid robot. , 2015, , .		6
36	Control of a Surgical Intravascular Microrobot in a Pulsatile Flow Using Rotating Electromagnetic Coils. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2015, 2015.6, 327-328.	0.0	0

Ко Үамамото

#	Article	IF	CITATIONS
37	Preliminary Study on Control of a Magnetically Propelled Intravascular Microrobot. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2015, 2015.6, 25-26.	0.0	0
38	Identification of macroscopic feedback gain in a position-controlled humanoid robot and its application to falling detection. , 2014, , .		6
39	Falling prevention of humanoid robots by switching standing balance and hopping motion based on MOA set. , 2014, , .		4
40	Control of swarm behavior in crossing pedestrians based on temporal/spatial frequencies. Robotics and Autonomous Systems, 2013, 61, 1036-1048.	5.1	13
41	Low-Power Photo-Induced Precession of Magnetization in Ultra-Thin Co/Pd Multilayer Films. IEEE Transactions on Magnetics, 2013, 49, 3155-3158.	2.1	12
42	Maximal output admissible set for trajectory tracking control of biped robots and its application to falling avoidance control. , 2013, , .		15
43	Human swarm modeling in exhibition space and space design. , 2011, , .		4
44	Continuum model of crossing pedestrian flows and swarm control based on temporal/spatial frequency. , 2011, , .		14
45	Human swarm modeling in exhibition space and space design. , 2011, , .		3
46	Human preferences for robot-human hand-over configurations. , 2011, , .		5
47	Pedestrian Swarm Control Based on Temporal/Spatial Frequency of Crossing Flows. Journal of the Robotics Society of Japan, 2011, 29, 737-744.	0.1	1
48	Syntheses and Characterizations of Soluble PDMS-Grafted Polyimides. Transactions of the Materials Research Society of Japan, 2010, 35, 237-240.	0.2	4
49	Switching control and quick stepping motion generation based on the maximal CPI sets for falling avoidance of humanoid robots. , 2010, , .		14
50	Photon emission during fracture of carbon materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 187-192.	2.1	1
51	Switching feedback controllers based on the maximal CPI sets for stabilization of humanoid robots. , 2009, , .		11
52	Hardware design of high performance miniature anthropomorphic robots. Robotics and Autonomous Systems, 2008, 56, 82-94.	5.1	52
53	Dynamics simulation of humanoid robots with position-controlled joints and closed kinematic chains. , 2008, , .		1
54	Portable Execution Time Analysis Method. , 2006, , .		6

Portable Execution Time Analysis Method. , 2006, , . 54

Ко Үамамото

#	Article	IF	CITATIONS
55	Architectural design of miniature anthropomorphic robots towards high-mobility. , 2005, , .		14
56	Organic-Inorganic Hybrid Zeolites Containing Organic Frameworks. Science, 2003, 300, 470-472.	12.6	198
57	Deflecting, detecting, and funneling atoms using near-field light. , 2003, , .		1
58	Lorentz microscopy of magnetic fine particles. Microscopy and Microanalysis, 1999, 5, 30-31.	0.4	0
59	Household Membrane Bioreactor in Domestic Wastewater Treatment. Water Science and Technology, 1993, 27, 171-178.	2.5	101
60	Interaction of α-tocopherol with iron: antioxidant and prooxidant effects of α-tocopherol in the oxidation of lipids in aqueous dispersions in the presence of iron. Lipids and Lipid Metabolism, 1988, 958, 19-23.	2.6	103
61	A framework for customizing coherence protocols of distributed file caches. , 0, , .		0
62	Optimization of shield structures in analog integrated circuits. , 0, , .		0
63	Near-field-light lens for nano-focusing of atoms. , 0, , .		0
64	Online dynamical retouch of motion patterns towards animatronic humanoid robots. , 0, , .		4
65	Primitive communication based on motion recognition and generation with hierarchical mimesis model. , 0, , .		29