Mathieu Blanchette

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6967698/publications.pdf
Version: 2024-02-01

PhyloPGM: boosting regulatory function prediction accuracy using evolutionary information.
Bioinformatics, 2022, 38, i299-i306.

2 Reconstruction of full-length LINE-1 progenitors from ancestral genomes. Genetics, 2022, 221, .
2.9

ETS1, ELK1, and ETV4 Transcription Factors Regulate Angiopoietin-1 Signaling and the Angiogenic
Response in Endothelial Cells. Frontiers in Physiology, 2021, 12, 683651.

Profiling Chromatin Landscape at High Resolution and Throughput with 2C-ChIP. Methods in
Molecular Biology, 2021, 2157, 127-157.
oRNAment: a database of putative RNA binding protein target sites in the transcriptomes of model species. Nucleic Acids Research, 2020, 48, D166-D173.
$14.5 \quad 52$

6 Mycorrhiza: genotype assignment using phylogenetic networks. Bioinformatics, 2020, 36, 212-220.
$4.1 \quad 4$

7 Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. Journal of
$7 \quad$ Proteome Research, 2020, 19, 18-27.
$3.7 \quad 37$

8 EvoLSTM: context-dependent models of sequence evolution using a sequence-to-sequence LSTM.
Bioinformatics, 2020, 36, i353-i361.

Graph neural representational learning of RNA secondary structures for predicting RNA-protein
9 interactions. Bioinformatics, 2020, 36, i276-i284.

10 Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.
28.9

93

> 11 LAMPS: an analysis pipeline for sequence-specific ligation-mediated amplification reads. BMC Research
> Notes, 2020, 13, 273 .
1.4

3

12 Inter-dependent Centrosomal Co-localization of the cen and ik2 cis-Natural Antisense mRNAs in 12 Drosophila. Cell Reports, 2020, 30, 3339-3352.e6.
6.4

27
$12.8 \quad 98$
interactions. Nature Communications, 2020, 11, 1018.

HIFI: estimating DNA-DNA interaction frequency from $\mathrm{Hi}-\mathrm{C}$ data at restriction-fragment resolution.
8.8

Genome Biology, 2020, 21, 11.
24

15 Supervised learning on phylogenetically distributed data. Bioinformatics, 2020, 36, i895-i902.
$4.1 \quad 2$

Prediction of mRNA subcellular localization using deep recurrent neural networks. Bioinformatics,
4.1

53
2019, 35, i333-i342.

Large-scale mammalian genome rearrangements coincide with chromatin interactions. Bioinformatics,
4.1

4

$25 \quad$| Double-Stranded Biotinylated Donor Enhances Homology-Directed Repair in Combination with Cas9 |
| :--- |
| Monoavidin in Mammalian Cells. CRISPR Journal, 2018, 1, 414-430. |

A critical assessment of topologically associating domain prediction tools. Nucleic Acids Research,
2017, 45, 2994-3005.
CoreTracker: accurate codon reassignment prediction, applied to mitochondrial genomes.

Bioinformatics, 2017, 33, 3331-3339. (| Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian |
| :--- |
| sequences. Nucleic Acids Research, $2017,45,556-566$. |

Functional 5 â $€^{2}$ UTR motif discovery with LESMoN: Local Enrichment of Sequence Motifs in biological
Networks. Nucleic Acids Research, 2017, 45, 10415-10427. Networks. Nucleic Acids Research, 2017, 45, 10415-10427.
14.5 9
30 Models and algorithms for genome rearrangement with positional constraints. Algorithms for Molecular Biology, 2016, 11, 13.1.29Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from$31 \quad \begin{aligned} & \text { Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes } \\ & \text { Transposable Elements. Molecular Biology and Evolution, 2016, 33, 1937-1956. }\end{aligned}$Population whole-genome bisulfite sequencing across two tissues highlights the environment as theprincipal source of human methylome variation. Genome Biology, 2015, 16, 290.
8.9

A low-latency, big database system and browser for storage, querying and visualization of 3D genomic
data. Nucleic Acids Research, 2015, 43, e103-e103.
An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory

regions. Nature Genetics, 2013, 45, 891-898. | Exploiting ancestral mammalian genomes for the prediction of human transcription factor binding |
| :--- |
| sites. BMC Bioinformatics, 2012, 13, S2. |

41 A Probabilistic Model for Sequence Alignment with Context-Sensitive Indels. Journal of
Computation and Analysis of Genomic Multi-Sequence Alignments. Annual Review of Genomics and
Human Genetics, 2007, 8, 193-213.

$46 \quad$| Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery |
| :--- |
| Reveals the Identity of the 7SK Capping Enzyme. Molecular Cell, 2007, 27, 262-274. |

$47 \quad$| Exact and Heuristic Algorithms for the Indel Maximum Likelihood Problem. Journal of Computational |
| :--- |
| Biology, 2007, 14, 446-461. |48 Reconstructing contiguous regions of an ancestral genome. Genome Research, 2006, 16, 1557-1565.5.5246

49 Genome-wide computational prediction of transcriptional regulatory modules reveals new insights 5.5 229 into human gene expression. Genome Research, 2006, 16, 656-668.

Reconstructing large regions of an ancestral mammalian genome in silico. Genome Research, 2004, 14,

