Mathieu Blanchette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6967698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PhyloPGM: boosting regulatory function prediction accuracy using evolutionary information. Bioinformatics, 2022, 38, i299-i306.	4.1	1
2	Reconstruction of full-length LINE-1 progenitors from ancestral genomes. Genetics, 2022, 221, .	2.9	6
3	ETS1, ELK1, and ETV4 Transcription Factors Regulate Angiopoietin-1 Signaling and the Angiogenic Response in Endothelial Cells. Frontiers in Physiology, 2021, 12, 683651.	2.8	9
4	Profiling Chromatin Landscape at High Resolution and Throughput with 2C-ChIP. Methods in Molecular Biology, 2021, 2157, 127-157.	0.9	0
5	oRNAment: a database of putative RNA binding protein target sites in the transcriptomes of model species. Nucleic Acids Research, 2020, 48, D166-D173.	14.5	52
6	Mycorrhiza: genotype assignment using phylogenetic networks. Bioinformatics, 2020, 36, 212-220.	4.1	4
7	Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. Journal of Proteome Research, 2020, 19, 18-27.	3.7	37
8	EvoLSTM: context-dependent models of sequence evolution using a sequence-to-sequence LSTM. Bioinformatics, 2020, 36, i353-i361.	4.1	4
9	Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions. Bioinformatics, 2020, 36, i276-i284.	4.1	36
10	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	28.9	93
11	LAMPS: an analysis pipeline for sequence-specific ligation-mediated amplification reads. BMC Research Notes, 2020, 13, 273.	1.4	3
12	Inter-dependent Centrosomal Co-localization of the cen and ik2 cis-Natural Antisense mRNAs in Drosophila. Cell Reports, 2020, 30, 3339-3352.e6.	6.4	27
13	RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions. Nature Communications, 2020, 11, 1018.	12.8	98
14	HIFI: estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution. Genome Biology, 2020, 21, 11.	8.8	24
15	Supervised learning on phylogenetically distributed data. Bioinformatics, 2020, 36, i895-i902.	4.1	2
16	Prediction of mRNA subcellular localization using deep recurrent neural networks. Bioinformatics, 2019, 35, i333-i342.	4.1	53
17	Large-scale mammalian genome rearrangements coincide with chromatin interactions. Bioinformatics, 2019, 35, i117-i126.	4.1	4
18	Rapid Genetic Code Evolution in Green Algal Mitochondrial Genomes. Molecular Biology and Evolution, 2019, 36, 766-783.	8.9	22

MATHIEU BLANCHETTE

#	Article	IF	CITATIONS
19	2C-ChIP: measuring chromatin immunoprecipitation signal from defined genomic regions with deep sequencing. BMC Genomics, 2019, 20, 162.	2.8	4
20	Bioinformatics Approaches to Gain Insights into cis-Regulatory Motifs Involved in mRNA Localization. Advances in Experimental Medicine and Biology, 2019, 1203, 165-194.	1.6	2
21	An analytic approach for interpretable predictive models in highâ€dimensional data in the presence of interactions with exposures. Genetic Epidemiology, 2018, 42, 233-249.	1.3	8
22	CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in <i>Drosophila</i> and human cells. Rna, 2018, 24, 98-113.	3.5	75
23	[Regular Paper] Detection of Errors in Multi-genome Alignments Using Machine Learning Approaches. , 2018, , .		0
24	RLALIGN: A Reinforcement Learning Approach for Multiple Sequence Alignment. , 2018, , .		5
25	Double-Stranded Biotinylated Donor Enhances Homology-Directed Repair in Combination with Cas9 Monoavidin in Mammalian Cells. CRISPR Journal, 2018, 1, 414-430.	2.9	12
26	A critical assessment of topologically associating domain prediction tools. Nucleic Acids Research, 2017, 45, 2994-3005.	14.5	121
27	CoreTracker: accurate codon reassignment prediction, applied to mitochondrial genomes. Bioinformatics, 2017, 33, 3331-3339.	4.1	12
28	Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences. Nucleic Acids Research, 2017, 45, 556-566.	14.5	34
29	Functional 5′ UTR motif discovery with LESMoN: Local Enrichment of Sequence Motifs in biological Networks. Nucleic Acids Research, 2017, 45, 10415-10427.	14.5	9
30	Models and algorithms for genome rearrangement with positional constraints. Algorithms for Molecular Biology, 2016, 11, 13.	1.2	9
31	Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from Transposable Elements. Molecular Biology and Evolution, 2016, 33, 1937-1956.	8.9	26
32	Population whole-genome bisulfite sequencing across two tissues highlights the environment as the principal source of human methylome variation. Genome Biology, 2015, 16, 290.	8.8	90
33	A low-latency, big database system and browser for storage, querying and visualization of 3D genomic data. Nucleic Acids Research, 2015, 43, e103-e103.	14.5	8
34	PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nature Communications, 2015, 6, 10124.	12.8	52
35	A call for benchmarking transposable element annotation methods. Mobile DNA, 2015, 6, 13.	3.6	83
36	Specific Dysregulation of IFNÎ ³ Production by Natural Killer Cells Confers Susceptibility to Viral Infection. PLoS Pathogens, 2014, 10, e1004511.	4.7	13

MATHIEU BLANCHETTE

#	Article	IF	CITATIONS
37	Evidence for Widespread Positive and Negative Selection in Coding and Conserved Noncoding Regions of Capsella grandiflora. PLoS Genetics, 2014, 10, e1004622.	3.5	128
38	Methylation of the DNA/RNA-binding protein Kin17 by METTL22 affects its association with chromatin. Journal of Proteomics, 2014, 100, 115-124.	2.4	36
39	An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nature Genetics, 2013, 45, 891-898.	21.4	350
40	Exploiting ancestral mammalian genomes for the prediction of human transcription factor binding sites. BMC Bioinformatics, 2012, 13, S2.	2.6	1
41	A Probabilistic Model for Sequence Alignment with Context-Sensitive Indels. Journal of Computational Biology, 2011, 18, 1449-1464.	1.6	10
42	Ancestors 1.0: a web server for ancestral sequence reconstruction. Bioinformatics, 2010, 26, 130-131.	4.1	38
43	Detection of Locally Over-Represented GO Terms in Protein-Protein Interaction Networks. Journal of Computational Biology, 2010, 17, 443-457.	1.6	12
44	Chromatin conformation signatures of cellular differentiation. Genome Biology, 2009, 10, R37.	9.6	108
45	Computation and Analysis of Genomic Multi-Sequence Alignments. Annual Review of Genomics and Human Genetics, 2007, 8, 193-213.	6.2	30
46	Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery Reveals the Identity of the 7SK Capping Enzyme. Molecular Cell, 2007, 27, 262-274.	9.7	404
47	Exact and Heuristic Algorithms for the Indel Maximum Likelihood Problem. Journal of Computational Biology, 2007, 14, 446-461.	1.6	33
48	Reconstructing contiguous regions of an ancestral genome. Genome Research, 2006, 16, 1557-1565.	5.5	246
49	Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Research, 2006, 16, 656-668.	5.5	229
50	Reconstructing large regions of an ancestral mammalian genome in silico. Genome Research, 2004, 14, 2412-2423.	5.5	121
51	Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner. Genome Research, 2004, 14, 708-715.	5.5	1,290
52	Algorithms for Phylogenetic Footprinting. Journal of Computational Biology, 2002, 9, 211-223.	1.6	138
53	Discovery of Regulatory Elements by a Computational Method for Phylogenetic Footprinting. Genome Research, 2002, 12, 739-748.	5.5	268
54	Phylogenetic Invariants for Genome Rearrangements. Journal of Computational Biology, 1999, 6, 431-445.	1.6	31

#	Article	IF	CITATIONS
55	Gene Order Breakpoint Evidence in Animal Mitochondrial Phylogeny. Journal of Molecular Evolution, 1999, 49, 193-203.	1.8	159