
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6967199/publications.pdf Version: 2024-02-01

DETED A LAWDENCE

#	Article	IF	CITATIONS
1	An exciting period of Drosophila developmental biology: Of imaginal discs, clones, compartments, parasegments and homeotic genes. Developmental Biology, 2022, 484, 12-21.	2.0	15
2	Planar cell polarity in the larval epidermis of <i>Drosophila</i> and the role of microtubules. Open Biology, 2020, 10, 200290.	3.6	6
3	A refutation to â€~A new A-P compartment boundary and organizer in holometabolous insect wings'. Scientific Reports, 2019, 9, 7049.	3.3	3
4	Sydney Brenner: a master of science and of wit. Development (Cambridge), 2019, 146, .	2.5	0
5	Planar cell polarity: two genetic systems use one mechanism to read gradients. Development (Cambridge), 2018, 145, .	2.5	23
6	Planar cell polarity: the <i>prickle</i> gene acts independently on both the Ds/Ft and the Stan/Fz systems. Development (Cambridge), 2018, 145, .	2.5	10
7	11. Organogenèse. , 2017, , 446-519.		Ο
8	2. Mise en place du plan d'organisation de la drosophile. , 2017, , 37-102.		0
9	Francis Crick: A Singular Approach to Scientific Discovery. Cell, 2016, 167, 1436-1439.	28.9	1
10	The Last 50 Years. Current Topics in Developmental Biology, 2016, 116, 617-631.	2.2	14
11	Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of <i>Drosophila</i> . Biology Open, 2016, 5, 397-408.	1.2	7
12	Regions within a single epidermal cell of Drosophila can be planar polarised independently. ELife, 2015, 4, .	6.0	13
13	Plasticity of both planar cell polarity and cell identity during the development of Drosophila. ELife, 2014, 3, e01569.	6.0	10
14	The mechanisms of planar cell polarity, growth and the Hippo pathway: Some known unknowns. Developmental Biology, 2013, 377, 1-8.	2.0	46
15	The muscle pattern of the <i>Drosophila</i> abdomen depends on a subdivision of the anterior compartment of each segment. Development (Cambridge), 2012, 139, 75-83.	2.5	11
16	Dissecting the molecular bridges that mediate the function of Frizzled in planar cell polarity. Development (Cambridge), 2012, 139, 3665-3674.	2.5	62
17	Substrate-Borne Vibratory Communication during Courtship in Drosophila melanogaster. Current Biology, 2012, 22, 2180-2185.	3.9	71
18	Planar cell polarity. Fly, 2011, 5, 126-128.	1.7	5

#	Article	IF	CITATIONS
19	Four-Jointed Modulates Growth and Planar Polarity by Reducing the Affinity of Dachsous for Fat. Current Biology, 2010, 20, 803-810.	3.9	132
20	Mechanosensilla in the adult abdomen of Drosophila: engrailed and slit help to corral the peripheral sensory axons into segmental bundles. Development (Cambridge), 2010, 137, 2885-2894.	2.5	1
21	Planar cell polarity: the orientation of larval denticles in Drosophila appears to depend on gradients of Dachsous and Fat. Development (Cambridge), 2010, 137, 3411-3415.	2.5	39
22	Real Lives and White Lies in the Funding of Scientific Research. PLoS Biology, 2009, 7, e1000197.	5.6	15
23	The abdomen of Drosophila: does planar cell polarity orient the neurons of mechanosensory bristles?. Neural Development, 2008, 3, 12.	2.4	13
24	Retiring retirement. Nature, 2008, 453, 588-590.	27.8	7
25	Do the protocadherins Fat and Dachsous link up to determine both planar cell polarity and the dimensions of organs?. Nature Cell Biology, 2008, 10, 1379-1382.	10.3	70
26	Planar Cell Polarity: A Bridge Too Far?. Current Biology, 2008, 18, R959-R961.	3.9	17
27	Planar cell polarity: one or two pathways?. Nature Reviews Genetics, 2007, 8, 555-563.	16.3	204
28	The mismeasurement of science. Current Biology, 2007, 17, R583-R585.	3.9	177
29	Let's encourage gentler, more reflective scientists. Nature, 2006, 442, 510-510.	27.8	0
30	Biography of Crick aims to inspire a wider audience. Nature, 2006, 444, 1002-1002.	27.8	0
31	Mosaic and regulative development: two faces of one coin. Current Biology, 2006, 16, R236-R239.	3.9	49
32	Men, Women, and Ghosts in Science. PLoS Biology, 2006, 4, e19.	5.6	37
33	Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled,act independently to confer planar cell polarity. Development (Cambridge), 2006, 133, 4561-4572.	2.5	195
34	A WIGGLESWORTH CLASSIC: HOW CELLS MAKE PATTERNS. Journal of Experimental Biology, 2004, 207, 192-193.	1.7	0
35	Cell interactions and planar polarity in the abdominal epidermis ofDrosophila. Development (Cambridge), 2004, 131, 4651-4664.	2.5	150
36	Last hideout of the unknown?. Nature, 2004, 429, 247-247.	27.8	12

#	Article	IF	CITATIONS
37	Theoretical embryology: a route to extinction?. Current Biology, 2004, 14, R7-R8.	3.9	4
38	Q & A. Current Biology, 2003, 13, R82.	3.9	0
39	Dual Origin of the Renal Tubules in Drosophila. Current Biology, 2003, 13, 1052-1057.	3.9	104
40	The politics of publication. Nature, 2003, 422, 259-261.	27.8	333
41	Developmental Compartments and Planar Polarity in Drosophila. Current Biology, 2002, 12, 1189-1198.	3.9	136
42	Rank injustice. Nature, 2002, 415, 835-836.	27.8	66
43	Towards a model of the organisation of planar polarity and pattern in the <i>Drosophila</i> abdomen. Development (Cambridge), 2002, 129, 2749-2760.	2.5	98
44	Towards a model of the organisation of planar polarity and pattern in the Drosophila abdomen. Development (Cambridge), 2002, 129, 2749-60.	2.5	52
45	Science or alchemy?. Nature Reviews Genetics, 2001, 2, 139-142.	16.3	12
46	Morphogens: how big is the big picture?. Nature Cell Biology, 2001, 3, E151-E154.	10.3	52
47	Wingless signalling: More about the Wingless morphogen. Current Biology, 2001, 11, R638-R639.	3.9	9
48	How does thefushi tarazu gene activateengrailed in theDrosophila embryo?. , 1998, 23, 28-34.		11
49	A man for our season. Nature, 1997, 386, 757-758.	27.8	13
50	Straight and wiggly affinities. Nature, 1997, 389, 546-547.	27.8	16
51	Morphogens, Compartments, and Pattern: Lessons from Drosophila?. Cell, 1996, 85, 951-961.	28.9	547
52	Regulation of cell number in Drosopfiila. Nature, 1994, 370, 561-563.	27.8	29
53	It takes three to distalize. Nature, 1994, 372, 132-133.	27.8	30
54	Homeobox genes: Their function in Drosophila segmentation and pattern formation. Cell, 1994, 78, 181-189.	28.9	289

#	Article	IF	CITATIONS
55	A no-wing situation. Nature, 1993, 366, 305-306.	27.8	7
56	<i>Drosophila</i> segmentation: after the first three hours. Development (Cambridge), 1993, 119, 971-976.	2.5	15
57	Control of Drosophila body pattern by the hunchback morphogen gradient. Cell, 1992, 69, 237-249.	28.9	512
58	Lighting up Drosophila. Nature, 1992, 356, 107-108.	27.8	8
59	A marriage is consummated. Nature, 1991, 352, 193-193.	27.8	5
60	Compartments in vertebrates?. Nature, 1990, 344, 382-383.	27.8	24
61	Induction across germ layers in Drosophila mediated by a genetic cascade. Cell, 1990, 62, 261-268.	28.9	353
62	Distribution of the wingless gene product in drosophila embryos: A protein involved in cell-cell communication. Cell, 1989, 59, 739-749.	28.9	455
63	Differential regulation of Ultrabithorax in two germ layers of drosophila. Cell, 1988, 53, 567-576.	28.9	123
64	The present status of the parasegment. Development (Cambridge), 1988, 104, 61-65.	2.5	28
65	Borders of parasegments in Drosophila embryos are delimited by the fushi tarazu and even-skipped genes. Nature, 1987, 328, 440-442.	27.8	240
66	Phenocopies induced with antisense RNA identify the wingless gene. Cell, 1987, 50, 659-663.	28.9	237
67	The muscle pattern of a segment of Drosophila may be determined by neurons and not by contributing myoblasts. Cell, 1986, 45, 505-513.	28.9	165
68	Observations on cell lineage of internal organs of Drosophila. Development (Cambridge), 1986, 91, 251-266.	2.5	15
69	Drosophila development: Compartment genes in hand. Nature, 1985, 313, 268-269.	27.8	2
70	Parasegments and compartments in the Drosophila embryo. Nature, 1985, 313, 639-642.	27.8	518
71	Expression of engrailed in the parasegment of Drosophila. Nature, 1985, 317, 634-636.	27.8	80
72	Notes on the genetics of pattern formation in the internal organs of Drosophila. Trends in Neurosciences, 1985, 8, 267-269.	8.6	9

#	Article	IF	CITATIONS
73	Problems and paradigms: Homoeotic selector genes - a working definition. BioEssays, 1984, 1, 227-229.	2.5	6
74	The genetic specification of pattern in a drosophila muscle. Cell, 1984, 36, 775-782.	28.9	77
75	Developmental biology: A new homeotic gene. Nature, 1983, 306, 643-643.	27.8	3
76	Different requirements for homeotic genes in the soma and germ line of Drosophila. Cell, 1983, 35, 27-34.	28.9	65
77	The elements of the bithorax complex. Cell, 1983, 35, 595-601.	28.9	92
78	The phenotype of engrailed mutations in the antenna of Drosophila. Developmental Biology, 1983, 99, 27-33.	2.0	25
79	Cell lineage of the thoracic muscles of drosophila. Cell, 1982, 29, 493-503.	28.9	112
80	Permeability of gap junctions at the segmental border in insect epidermis. Cell, 1982, 28, 243-252.	28.9	151
81	Myoblasts from Drosophila wing disks can contribute to developing muscles throughout the fly. Nature, 1982, 295, 55-57.	27.8	60
82	Clonal analysis of two wing-scalloping mutants of Drosophila. Developmental Biology, 1981, 84, 206-211.	2.0	30
83	Sensory projections from normal and homoeotically transformed antennae in Drosophila. Developmental Biology, 1981, 82, 224-237.	2.0	39
84	Regeneration of segment boundaries in Oncopeltus: Cell lineage. Developmental Biology, 1981, 85, 328-333.	2.0	26
85	The cellular basis of segmentation in insects. Cell, 1981, 26, 3-10.	28.9	138
86	Regeneration of the segment boundary in Oncopeltus. Developmental Biology, 1981, 85, 317-327.	2.0	69
87	Compartments in Animal Development. Scientific American, 1979, 241, 102-111.	1.0	93
88	Squaring the circle. Nature, 1979, 280, 722-723.	27.8	0
89	Early development of the thoracic discs ofDrosophila. Wilhelm Roux's Archives of Developmental Biology, 1979, 187, 375-379.	1.4	9
90	Development of the eye-antenna imaginal disc of Drosophila. Developmental Biology, 1979, 70, 355-371.	2.0	133

#	Article	IF	CITATIONS
91	Cell lineage in the developing retina of Drosophila. Developmental Biology, 1979, 71, 142-152.	2.0	165
92	Neural projection patterns from homeotic tissue of Drosophila studied in bithorax mutants and mosaics. Developmental Biology, 1979, 69, 549-575.	2.0	116
93	CELL LINEAGE IN INSECT DEVELOPMENT. , 1979, , 167-170.		0
94	Anterior and posterior compartments in the head of Drosophila. Nature, 1978, 274, 473-474.	27.8	63
95	Compartmentalization and growth of the Drosophila abdomen. Development (Cambridge), 1978, 43, 233-245.	2.5	5
96	The development of wingless, a homeotic mutation of Drosophila. Developmental Biology, 1977, 56, 227-240.	2.0	185
97	The early development of mesothoracic compartments in Drosophila. Developmental Biology, 1977, 56, 40-51.	2.0	164
98	Homoeotic genes, compartments and cell determination in Drosophila. Nature, 1977, 265, 211-216.	27.8	133
99	Genes in development. Nature, 1977, 270, 477-478.	27.8	0
100	Compartments in the Development of Drosophila: a Progress Report. , 1977, , 89-95.		0
101	RNA and generation of positional information. Nature, 1976, 264, 604-604.	27.8	0
102	The Structure and Properties of a Compartment Border: the Intersegmental Boundary in <i>Oncopeltus</i> . Novartis Foundation Symposium, 1975, 0, 3-23.	1.1	16
103	The Cell Cycle and Cellular Differentiation in Insects. Results and Problems in Cell Differentiation, 1975, , 111-121.	0.7	8
104	Cell movement during pattern regulation in Oncopeltus. Nature, 1974, 248, 609-610.	27.8	27
105	Maintenance of Boundaries between Developing Organs in Insects. Nature: New Biology, 1973, 242, 31-32.	4.5	22
106	Polarity and Patterns in the Postembryonic Development of Insects. Advances in Insect Physiology, 1970, 7, 197-266.	2.7	102
107	Some new mutants of the Large Milkweed Bug Oncopeltus fasciatus Dall. Genetical Research, 1970, 15, 347-350.	0.9	32
108	Cellular differentiation and pattern formation during metamorphosis of the milkweed bug Oncopeltus. Developmental Biology, 1969, 19, 12-40.	2.0	63

#	Article	IF	CITATIONS
109	The Hormonal Control of the Development of Hairs and Bristles in the Milkweed Bug, ONCOPELTUS FASCIATUS, DALL. Journal of Experimental Biology, 1966, 44, 507-522.	1.7	34
110	Gradients in the Insect Segment: The Orientation of Hairs in the Milkweed Bug <i>Oncopeltus Fasciatus</i> . Journal of Experimental Biology, 1966, 44, 607-620.	1.7	167