
## Carole Kretz-Remy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6966594/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF         | CITATIONS                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|
| 1  | Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O                                                                                                                                 | verlock 10 | ) T <u>f 50</u> 742 T<br>1,430 |
| 2  | Modulation of Protein Quality Control and Proteasome to Autophagy Switch in Immortalized<br>Myoblasts from Duchenne Muscular Dystrophy Patients. International Journal of Molecular Sciences,<br>2018, 19, 178.                                | 4.1        | 9                              |
| 3  | Distinct Contributions of Autophagy Receptors in Measles Virus Replication. Viruses, 2017, 9, 123.                                                                                                                                             | 3.3        | 38                             |
| 4  | NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Molecular Biology of the Cell, 2016, 27, 1712-1727.                                                               | 2.1        | 40                             |
| 5  | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).<br>Autophagy, 2016, 12, 1-222.                                                                                                                     | 9.1        | 4,701                          |
| 6  | Analysis of the Dominant Effects Mediated by Wild Type or R120G Mutant of αB-crystallin (HspB5)<br>towards Hsp27 (HspB1). PLoS ONE, 2013, 8, e70545.                                                                                           | 2.5        | 26                             |
| 7  | Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.                                                                                                                                     | 9.1        | 3,122                          |
| 8  | Knock Down of Heat Shock Protein 27 (HspB1) Induces Degradation of Several Putative Client Proteins.<br>PLoS ONE, 2012, 7, e29719.                                                                                                             | 2.5        | 56                             |
| 9  | NF-κB regulates protein quality control after heat stress through modulation of the BAG3–HspB8<br>complex. Journal of Cell Science, 2012, 125, 1141-1151.                                                                                      | 2.0        | 58                             |
| 10 | Autophagy activation by NFκB is essential for cell survival after heat shock. Autophagy, 2009, 5, 766-783.                                                                                                                                     | 9.1        | 118                            |
| 11 | Hsp27 (HspB1) and αB-crystallin (HspB5) as therapeutic targets. FEBS Letters, 2007, 581, 3665-3674.                                                                                                                                            | 2.8        | 266                            |
| 12 | Huntingtin inclusion bodies are iron-dependent centers of oxidative events. FEBS Journal, 2006, 273, 5428-5441.                                                                                                                                | 4.7        | 66                             |
| 13 | Hsp27 Consolidates Intracellular Redox Homeostasis by Upholding Glutathione in Its Reduced Form and by Decreasing Iron Intracellular Levels. ChemInform, 2005, 36, no.                                                                         | 0.0        | 0                              |
| 14 | Human Papillomavirus Type 18 E6 Protein Binds the Cellular PDZ Protein TIP-2/GIPC, Which Is Involved<br>in Transforming Growth Factor β Signaling and Triggers Its Degradation by the Proteasome. Journal of<br>Virology, 2005, 79, 4229-4237. | 3.4        | 70                             |
| 15 | Hsp27 Consolidates Intracellular Redox Homeostasis by Upholding Glutathione in Its Reduced Form and by Decreasing Iron Intracellular Levels. Antioxidants and Redox Signaling, 2005, 7, 414-422.                                               | 5.4        | 221                            |
| 16 | Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods, 2005, 35, 126-138.                                                                                             | 3.8        | 105                            |
| 17 | Modulation of the Chymotrypsin-Like Activity of the 20S Proteasome by Intracellular Redox Status:<br>Effects of Glutathione Peroxidase-1 Overexpression and Antioxidant Drugs. Biological Chemistry,<br>2003, 384, 589-595.                    | 2.5        | 25                             |
| 18 | Hsp27 as a Negative Regulator of Cytochrome <i>c</i> Release. Molecular and Cellular Biology, 2002, 22, 816-834.                                                                                                                               | 2.3        | 403                            |

CAROLE KRETZ-REMY

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | [20] Gene expression and thiol redox state. Methods in Enzymology, 2002, 348, 200-215.                                                                                                          | 1.0 | 28        |
| 20 | Small Stress Proteins: Novel Negative Modulators of Apoptosis Induced Independently of Reactive Oxygen Species. Progress in Molecular and Subcellular Biology, 2002, 28, 185-204.               | 1.6 | 58        |
| 21 | Small Stress Proteins: Modulation of Intracellular Redox State and Protection Against Oxidative<br>Stress. Progress in Molecular and Subcellular Biology, 2002, 28, 171-184.                    | 1.6 | 33        |
| 22 | Selenium: A key element that controls NFâ€₽B activation and lκBα half life. BioFactors, 2001, 14, 117-125.                                                                                      | 5.4 | 75        |
| 23 | NFκB-dependent Transcriptional Activation during Heat Shock Recovery. Journal of Biological Chemistry, 2001, 276, 43723-43733.                                                                  | 3.4 | 35        |
| 24 | The nuclear chronicles: gene transcription and molecular traveling. Biochemistry and Cell Biology, 1999, 77, 243-247.                                                                           | 2.0 | 3         |
| 25 | SUMO/sentrin: protein modifiers regulating important cellular functions. Biochemistry and Cell<br>Biology, 1999, 77, 299-309.                                                                   | 2.0 | 35        |
| 26 | Amino Acid Analogs Activate NF-κB through Redox-dependent lκB-α Degradation by the Proteasome<br>without Apparent lκB-α Phosphorylation. Journal of Biological Chemistry, 1998, 273, 3180-3191. | 3.4 | 44        |
| 27 | The kinetics of HIV-1 long terminal repeat transcriptional activation resemble those of hsp70 promoter<br>in heat-shock treated HeLa cells. FEBS Letters, 1994, 353, 338-344.                   | 2.8 | 9         |
| 28 | The kinetics of HIV-1 long terminal repeat transcriptional activation resemble those of hsp70 promoter<br>in heat-shock treated HeLa cells. FEBS Letters, 1994, 351, 191-196.                   | 2.8 | 24        |