Daniel J Weix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6966028/publications.pdf

Version: 2024-02-01

66343 98798 7,866 68 42 67 citations h-index g-index papers 109 109 109 4455 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Methods and Mechanisms for Cross-Electrophile Coupling of Csp ² Halides with Alkyl Electrophiles. Accounts of Chemical Research, 2015, 48, 1767-1775.	15.6	782
2	Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides. Journal of the American Chemical Society, 2013, 135, 16192-16197.	13.7	521
3	Cross-Electrophile Coupling: Principles of Reactivity and Selectivity. Journal of Organic Chemistry, 2014, 79, 4793-4798.	3.2	475
4	Nickel-Catalyzed Reductive Cross-Coupling of Aryl Halides with Alkyl Halides. Journal of the American Chemical Society, 2010, 132, 920-921.	13.7	384
5	Decarboxylative Cross-Electrophile Coupling of $\langle i \rangle N \langle i \rangle$ -Hydroxyphthalimide Esters with Aryl lodides. Journal of the American Chemical Society, 2016, 138, 5016-5019.	13.7	345
6	Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides. Journal of the American Chemical Society, 2012, 134, 6146-6159.	13.7	328
7	Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates. Nature, 2015, 524, 454-457.	27.8	249
8	<i>Z</i> -Selective Alkene Isomerization by High-Spin Cobalt(II) Complexes. Journal of the American Chemical Society, 2014, 136, 945-955.	13.7	196
9	General and Efficient C–C Bond Forming Photoredox Catalysis with Semiconductor Quantum Dots. Journal of the American Chemical Society, 2017, 139, 4250-4253.	13.7	194
10	Rapid, Regioconvergent, Solvent-Free Alkene Hydrosilylation with a Cobalt Catalyst. Journal of the American Chemical Society, 2015, 137, 13244-13247.	13.7	192
11	Diastereoselective and Enantioselective Rh(I)-Catalyzed Additions of Arylboronic Acids to N-tert-Butanesulfinyl and N-Diphenylphosphinoyl Aldimines. Journal of the American Chemical Society, 2005, 127, 1092-1093.	13.7	190
12	Cobalt co-catalysis for cross-electrophile coupling: diarylmethanes from benzyl mesylates and aryl halides. Chemical Science, 2015, 6, 1115-1119.	7.4	182
13	Nickel-catalyzed, sodium iodide-promoted reductive dimerization of alkyl halides, alkyl pseudohalides, and allylic acetates. Chemical Communications, 2010, 46, 5743.	4.1	171
14	Nickel-Catalyzed Regiodivergent Opening of Epoxides with Aryl Halides: Co-Catalysis Controls Regioselectivity. Journal of the American Chemical Society, 2014, 136, 48-51.	13.7	156
15	Enantioselective Cross-Coupling of <i>meso</i> -Epoxides with Aryl Halides. Journal of the American Chemical Society, 2015, 137, 3237-3240.	13.7	155
16	Regioselective and Enantioselective Iridium-Catalyzed Allylation of Enamines. Journal of the American Chemical Society, 2007, 129, 7720-7721.	13.7	153
17	New ligands for nickel catalysis from diverse pharmaceutical heterocycle libraries. Nature Chemistry, 2016, 8, 1126-1130.	13.6	150
18	LiCl-Accelerated Multimetallic Cross-Coupling of Aryl Chlorides with Aryl Triflates. Journal of the American Chemical Society, 2019, 141, 10978-10983.	13.7	147

#	Article	IF	CITATIONS
19	Synthesis of Functionalized Dialkyl Ketones from Carboxylic Acid Derivatives and Alkyl Halides. Organic Letters, 2012, 14, 1476-1479.	4.6	142
20	Improved Synthesis oftert-Butanesulfinamide Suitable for Large-Scale Production. Organic Letters, 2003, 5, 1317-1320.	4.6	138
21	Asymmetric Synthesis of Protected Arylglycines by Rhodium-Catalyzed Addition of Arylboronic Acids to N-tert-Butanesulfinyl Imino Esters. Journal of the American Chemical Society, 2006, 128, 6304-6305.	13.7	133
22	Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Chlorides with Primary Alkyl Chlorides. Journal of the American Chemical Society, 2020, 142, 9902-9907.	13.7	129
23	Molecular Basis of Lysosomal Enzyme Recognition: Three-Dimensional Structure of the Cation-Dependent Mannose 6-Phosphate Receptor. Cell, 1998, 93, 639-648.	28.9	127
24	Enantioselective Iridium-Catalyzed Allylic Amination of Ammonia and Convenient Ammonia Surrogates. Organic Letters, 2007, 9, 3949-3952.	4.6	117
25	Reductive Decarboxylative Alkynylation of <i>N</i> àêHydroxyphthalimide Esters with Bromoalkynes. Angewandte Chemie - International Edition, 2017, 56, 11901-11905.	13.8	116
26	Multimetallic Ni- and Pd-Catalyzed Cross-Electrophile Coupling To Form Highly Substituted 1,3-Dienes. Journal of the American Chemical Society, 2018, 140, 2446-2449.	13.7	109
27	[5]HELOL Phosphite:Â A Helically Grooved Sensor of Remote Chirality. Journal of the American Chemical Society, 2000, 122, 10027-10032.	13.7	104
28	Nickelâ€Catalyzed Synthesis of Dialkyl Ketones from the Coupling of Nâ€Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angewandte Chemie - International Edition, 2020, 59, 13484-13489.	13.8	104
29	Selective Cross-Coupling of Organic Halides with Allylic Acetates. Journal of Organic Chemistry, 2012, 77, 9989-10000.	3.2	103
30	Ketones from Nickelâ€Catalyzed Decarboxylative, Nonâ€Symmetric Crossâ€Electrophile Coupling of Carboxylic Acid Esters. Angewandte Chemie - International Edition, 2019, 58, 12081-12085.	13.8	100
31	Nickel-Catalyzed Reductive Conjugate Addition to Enones via Allylnickel Intermediates. Journal of the American Chemical Society, 2013, 135, 751-762.	13.7	93
32	Crossâ€Electrophile Coupling of Vinyl Halides with Alkyl Halides. Chemistry - A European Journal, 2016, 22, 7399-7402.	3.3	84
33	Coupling of Challenging Heteroaryl Halides with Alkyl Halides via Nickel-Catalyzed Cross-Electrophile Coupling. Journal of Organic Chemistry, 2017, 82, 7085-7092.	3.2	84
34	Ruthenium-Catalyzed C–H Arylation of Diverse Aryl Carboxylic Acids with Aryl and Heteroaryl Halides. Organic Letters, 2016, 18, 5432-5435.	4.6	82
35	Nickelâ€Catalyzed Crossâ€Electrophile Coupling with Organic Reductants in Nonâ€Amide Solvents. Chemistry - A European Journal, 2016, 22, 11564-11567.	3.3	79
36	Sulfonate Versus Sulfonate: Nickel and Palladium Multimetallic Cross-Electrophile Coupling of Aryl Triflates with Aryl Tosylates. Journal of the American Chemical Society, 2020, 142, 10634-10640.	13.7	75

#	Article	IF	Citations
37	Easy Synthesis of Functionalized Hetero[7]helicenes. Journal of Organic Chemistry, 1999, 64, 3671-3678.	3.2	74
38	Stoichiometric Reactions of Acylnickel(II) Complexes with Electrophiles and the Catalytic Synthesis of Ketones. Organometallics, 2014, 33, 5874-5881.	2.3	74
39	Metal-Reductant-Free Electrochemical Nickel-Catalyzed Couplings of Aryl and Alkyl Bromides in Acetonitrile. Organic Process Research and Development, 2019, 23, 1746-1751.	2.7	73
40	Removal of Triphenylphosphine Oxide by Precipitation with Zinc Chloride in Polar Solvents. Journal of Organic Chemistry, 2017, 82, 9931-9936.	3.2	64
41	Nickel-Catalyzed Addition of Aryl Bromides to Aldehydes To Form Hindered Secondary Alcohols. Journal of the American Chemical Society, 2019, 141, 1823-1827.	13.7	50
42	Reductive Conjugate Addition of Haloalkanes to Enones To Form Silyl Enol Ethers. Organic Letters, 2011, 13, 2766-2769.	4.6	45
43	In-Situ Bromination Enables Formal Cross-Electrophile Coupling of Alcohols with Aryl and Alkenyl Halides. ACS Catalysis, 2022, 12, 580-586.	11.2	43
44	Nickel-Catalyzed Cross-Electrophile Coupling of 2-Chloropyridines with Alkyl Bromides. Synlett, 2014, 25, 233-238.	1.8	40
45	Direct, Intermolecular, Enantioselective, Iridium-Catalyzed Allylation of Carbamates to Form Carbamate-Protected, Branched Allylic Amines. Organic Letters, 2009, 11, 2944-2947.	4.6	37
46	A General, Multimetallic Cross-Ullmann Biheteroaryl Synthesis from Heteroaryl Halides and Heteroaryl Triflates. Journal of the American Chemical Society, 2021, 143, 21484-21491.	13.7	35
47	CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. Journal of the American Chemical Society, 2022, 144, 12229-12246.	13.7	35
48	Reductive Decarboxylative Alkynylation of <i>N</i> â€Hydroxyphthalimide Esters with Bromoalkynes. Angewandte Chemie, 2017, 129, 12063-12067.	2.0	34
49	Ketones from Nickelâ€Catalyzed Decarboxylative, Nonâ€Symmetric Crossâ€Electrophile Coupling of Carboxylic Acid Esters. Angewandte Chemie, 2019, 131, 12209-12213.	2.0	33
50	4,4′,4″-Trimethyl-2,2′:6′,2″-terpyridine by Oxidative Coupling of 4-Picoline. Journal of Organic Chem 2014, 79, 10624-10628.	nistry, 3.2	26
51	Nickel-Catalyzed Reductive Conjugate Addition of Primary Alkyl Bromides to Enones To Form Silyl Enol Ethers. Organic Letters, 2017, 19, 340-343.	4.6	26
52	ChemBead Enabled Highâ€Throughput Crossâ€Electrophile Coupling Reveals a New Complementary Ligand. Chemistry - A European Journal, 2021, 27, 12981-12986.	3.3	26
53	Nickelâ€Catalyzed Synthesis of Dialkyl Ketones from the Coupling of Nâ€Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angewandte Chemie, 2020, 132, 13586-13591.	2.0	22
54	Substituted 2,2′-Bipyridines by Nickel Catalysis: 4,4′-Di-tert-butyl-2,2′-bipyridine. Synthesis, 2013, 45, 3099-3102.	2.3	21

#	Article	IF	CITATIONS
55	Nickel-Catalyzed C(sp ³)–C(sp ³) Cross-Electrophile Coupling of In Situ Generated NHP Esters with Unactivated Alkyl Bromides. Organic Letters, 2022, 24, 2853-2857.	4.6	19
56	Nickel-catalyzed reductive arylation of activated alkynes with aryl iodides. Tetrahedron Letters, 2015, 56, 3365-3367.	1.4	18
57	Ruthenium-Catalyzed C–H Arylation of 1-Naphthol with Aryl and Heteroaryl Halides. Journal of Organic Chemistry, 2019, 84, 15642-15647.	3.2	15
58	Mechanistic Study of Alkene Hydrosilylation Catalyzed by a \hat{I}^2 -Dialdiminate Cobalt(I) Complex. Organometallics, 2020, 39, 2415-2424.	2.3	15
59	Nickel-Catalyzed Cross-Coupling of Aryl Halides with Alkyl Halides: Ethyl 4-(4-(4-methylphenylsulfonamido)-phenyl)butanoate. Organic Syntheses, 2013, 90, 200.	1.0	15
60	Nickel-Catalyzed Allylation of α-Amido Sulfones To Form Protected Homoallylic Amines. Synlett, 2015, 26, 323-326.	1.8	10
61	When two metal atoms are better than one. Science, 2019, 363, 819-819.	12.6	4
62	Nickel-Catalyzed Synthesis of Ketones from Alkyl Halides and Acid Chlorides: Preparation of Ethyl 4-Oxododecanoate. Organic Syntheses, 2016, 93, 50-62.	1.0	4
63	[2,2′-Bis(diphenylphosphanyl)-1,1′-binaphthyl-β ² <i>P</i> , <i>P</i> ′]chlorido(4-methylphendichloromethane trisolvate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1830-m1830.	ylsulfonyl- 0.2	κ <i>S</i>)pa 1
64	Improved Synthesis of tert-Butanesulfinamide Suitable for Large-Scale Production ChemInform, 2003, 34, no.	0.0	0
65	Diastereoselective and Enantioselective Rh(I)-Catalyzed Additions of Arylboronic Acids to N-tert-Butanesulfinyl and N-Diphenylphosphinoyl Aldimines ChemInform, 2005, 36, no.	0.0	0
66	Bis{(R)-N-[(R)-2-benzyloxy-1-(4-tert-butylphenyl)ethyl]-2-methylpropane-2-sulfinamide} monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0405-0406.	0.2	0
67	Mastering mono-bond metathesis. Nature Chemistry, 2021, 13, 818-820.	13.6	0
68	Crystal structures of (RS)-N-[(1R,2S)-2-benzyloxy-1-(2,6-dimethylphenyl)propyl]-2-methylpropane-2-sulfinamide and (RS)-N-[(1S,2R)-2-benzyloxy-1-(2,4,6-trimethylphenyl)propyl]-2-methylpropane-2-sulfinamide: two related protected 1,2-amino alcohols. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 365-369.	0.2	0