Qiulong Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 2020, 5, 5-19.	23.3	1,138
2	Water‣ubricated Intercalation in V ₂ O ₅ ·nH ₂ O for High apacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	11.1	1,084
3	Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300.	11.1	615
4	Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nature Communications, 2017, 8, 14264.	5.8	588
5	Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced Materials Interfaces, 2018, 5, 1800848.	1.9	476
6	3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy, 2016, 19, 222-233.	8.2	321
7	Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy, 2017, 35, 396-404.	8.2	313
8	Layerâ€byâ€Layer Na ₃ V ₂ (PO ₄) ₃ Embedded in Reduced Graphene Oxide as Superior Rate and Ultralongâ€Life Sodiumâ€ion Battery Cathode. Advanced Energy Materials, 2016, 6, 1600389.	10.2	282
9	Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe ₃ O ₄ /Graphene Nanowires as a High-Rate Lithium Storage Anode. Nano Letters, 2014, 14, 6250-6256.	4.5	257
10	NiSe ₂ Nanooctahedra as an Anode Material for High-Rate and Long-Life Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 311-316.	4.0	234
11	One-Pot Synthesized Bicontinuous Hierarchical Li ₃ V ₂ (PO ₄) ₃ /C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries. Nano Letters, 2014, 14, 1042-1048.	4.5	230
12	Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy, 2016, 25, 145-153.	8.2	230
13	Ultrastable and High-Performance Zn/VO ₂ Battery Based on a Reversible Single-Phase Reaction. Chemistry of Materials, 2019, 31, 699-706.	3.2	227
14	Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 20902-20908.	4.0	210
15	Nanoscroll Buffered Hybrid Nanostructural VO ₂ (B) Cathodes for Highâ€Rate and Longâ€Life Lithium Storage. Advanced Materials, 2013, 25, 2969-2973.	11.1	207
16	Hydrated vanadium pentoxide with superior sodium storage capacity. Journal of Materials Chemistry A, 2015, 3, 8070-8075.	5.2	190
17	Synergistic Effect of Hierarchical Nanostructured MoO ₂ /Co(OH) ₂ with Largely Enhanced Pseudocapacitor Cyclability. Nano Letters, 2013, 13, 5685-5691.	4.5	186
18	Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries. CheM, 2019, 5, 1194-1209.	5.8	180

#	Article	IF	CITATIONS
19	Nanoflakeâ€Assembled Hierarchical Na ₃ V ₂ (PO ₄) ₃ /C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism. Advanced Energy Materials, 2015, 5, 1401963.	10.2	169
20	Mesoporous NiS ₂ Nanospheres Anode with Pseudocapacitance for Highâ€Rate and Long‣ife Sodium″on Battery. Small, 2017, 13, 1701744.	5.2	168
21	Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chemical Communications, 2018, 54, 4041-4044.	2.2	167
22	Hierarchical zigzag Na _{1.25} V ₃ O ₈ nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy and Environmental Science, 2015, 8, 1267-1275.	15.6	158
23	Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for Highâ€Rate Full Sodium Ion Storage Device. Advanced Energy Materials, 2018, 8, 1800058.	10.2	157
24	Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy, 2016, 28, 224-231.	8.2	139
25	Prussian White Hierarchical Nanotubes with Surfaceâ€Controlled Charge Storage for Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1806405.	7.8	124
26	Greigite Fe ₃ S ₄ as a new anode material for high-performance sodium-ion batteries. Chemical Science, 2017, 8, 160-164.	3.7	119
27	Graphene Oxide Wrapped Amorphous Copper Vanadium Oxide with Enhanced Capacitive Behavior for Highâ€Rate and Longâ€Life Lithiumâ€Ion Battery Anodes. Advanced Science, 2015, 2, 1500154.	5.6	114
28	Multidimensional Synergistic Nanoarchitecture Exhibiting Highly Stable and Ultrafast Sodiumâ€lon Storage. Advanced Materials, 2018, 30, e1707122.	11.1	112
29	Mesoporous Li ₃ VO ₄ /C Submicronâ€Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for Highâ€Power Lithiumâ€Ion Batteries. Advanced Science, 2015, 2, 1500284.	5.6	99
30	Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly. Journal of the American Chemical Society, 2019, 141, 16755-16762.	6.6	99
31	Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy, 2016, 28, 216-223.	8.2	97
32	A unique hollow Li ₃ VO ₄ /carbon nanotube composite anode for high rate long-life lithium-ion batteries. Nanoscale, 2014, 6, 11072-11077.	2.8	96
33	Pseudocapacitive Vanadiumâ€based Materials toward Highâ€Rate Sodiumâ€Ion Storage. Energy and Environmental Materials, 2020, 3, 221-234.	7.3	95
34	Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage. ACS Applied Materials & Interfaces, 2015, 7, 18211-18217.	4.0	94
35	Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. Journal of Materials Chemistry A, 2017, 5, 10827-10835.	5.2	94
36	Nanoflakesâ€Assembled Threeâ€Dimensional Hollowâ€Porous V ₂ O ₅ as Lithium Storage Cathodes with Highâ€Rate Capacity. Small, 2014, 10, 3032-3037.	5.2	90

#	Article	IF	CITATIONS
37	Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy, 2018, 47, 294-300.	8.2	87
38	Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2015, 7, 26572-26578.	4.0	82
39	Stable Ti ³⁺ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 17676-17683.	7.2	80
40	Flexible additive free H ₂ V ₃ O ₈ nanowire membrane as cathode for sodium ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 12074-12079.	1.3	79
41	Manipulating the Local Electronic Structure in Liâ€Rich Layered Cathode Towards Superior Electrochemical Performance. Advanced Functional Materials, 2021, 31, 2100783.	7.8	79
42	Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. Journal of Power Sources, 2014, 255, 235-241.	4.0	78
43	Top-down fabrication of three-dimensional porous V ₂ O ₅ hierarchical microplates with tunable porosity for improved lithium battery performance. Journal of Materials Chemistry A, 2014, 2, 3297-3302.	5.2	76
44	Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Physical Chemistry Chemical Physics, 2013, 15, 16828.	1.3	74
45	Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Research, 2015, 8, 481-490.	5.8	74
46	Integrated SnO ₂ nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. Physical Chemistry Chemical Physics, 2015, 17, 7619-7623.	1.3	74
47	Graphene Oxide Templated Growth and Superior Lithium Storage Performance of Novel Hierarchical Co ₂ V ₂ O ₇ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 2812-2818.	4.0	74
48	Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Research, 2016, 9, 2510-2519.	5.8	73
49	Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement. Advanced Energy Materials, 2017, 7, 1601582.	10.2	73
50	Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. Nano Energy, 2017, 41, 109-116.	8.2	73
51	Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19427-19432.	5.2	72
52	Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices. Nano Letters, 2016, 16, 1523-1529.	4.5	72
53	Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells. Chemical Communications, 2016, 52, 8099-8102.	2.2	71
54	Hierarchical Carbon Decorated Li ₃ V ₂ (PO ₄) ₃ as a Bicontinuous Cathode with Highâ€Rate Capability and Broad Temperature Adaptability. Advanced Energy Materials, 2014, 4, 1400107.	10.2	70

#	Article	IF	CITATIONS
55	Facile synthesis of a Co ₃ V ₂ O ₈ interconnected hollow microsphere anode with superior high-rate capability for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 5075-5080.	5.2	66
56	Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode. IScience, 2018, 6, 212-221.	1.9	63
57	Methyl-functionalized MoS ₂ nanosheets with reduced lattice breathing for enhanced pseudocapacitive sodium storage. Physical Chemistry Chemical Physics, 2017, 19, 13696-13702.	1.3	62
58	Surface Pseudocapacitive Mechanism of Molybdenum Phosphide for Highâ€Energy and Highâ€Power Sodiumâ€lon Capacitors. Advanced Energy Materials, 2019, 9, 1900967.	10.2	62
59	In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices. Nano Letters, 2015, 15, 3879-3884.	4.5	61
60	Amorphous VO ₂ : A Pseudocapacitive Platform for Highâ€Rate Symmetric Batteries. Advanced Materials, 2021, 33, e2103736.	11.1	60
61	Threeâ€Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for Highâ€Rate Longâ€Life Lithium Batteries. Small, 2015, 11, 2654-2660.	5.2	59
62	High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode. Nano-Micro Letters, 2021, 13, 55.	14.4	58
63	Self-template synthesis of hollow shell-controlled Li ₃ VO ₄ as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18839-18842.	5.2	57
64	Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy, 2016, 24, 130-138.	8.2	57
65	Uncovering the Cu-driven electrochemical mechanism of transition metal chalcogenides based electrodes. Energy Storage Materials, 2019, 16, 625-631.	9.5	56
66	A High-Rate V ₂ O ₅ Hollow Microclew Cathode for an All-Vanadium-Based Lithium-Ion Full Cell. Small, 2016, 12, 1082-1090.	5.2	55
67	Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: Reversible or not reversible?. Nano Energy, 2018, 51, 391-399.	8.2	55
68	Novel Polygonal Vanadium Oxide Nanoscrolls as Stable Cathode for Lithium Storage. Advanced Functional Materials, 2015, 25, 1773-1779.	7.8	54
69	Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy, 2017, 32, 347-352.	8.2	50
70	Multielectron Redox and Insulator-to-Metal Transition upon Lithium Insertion in the Fast-Charging, Wadsley-Roth Phase PNb ₉ 0 ₂₅ . Chemistry of Materials, 2020, 32, 4553-4563.	3.2	50
71	An Ultrahighâ€Power Mesocarbon Microbeads Na ⁺ â€Diglyme Na ₃ V ₂ (PO ₄) ₃ Sodium″on Battery. Advanced Materials, 2022, 34, e2108304.	11.1	50
72	Intercalation pseudocapacitance of FeVO4·nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy, 2020, 73, 104838.	8.2	48

#	Article	IF	CITATIONS
73	Nanoribbons and nanoscrolls intertwined three-dimensional vanadium oxide hydrogels for high-rate lithium storage at high mass loading level. Nano Energy, 2017, 40, 73-81.	8.2	44
74	Interconnected Nanorods–Nanoflakes Li ₂ Co ₂ (MoO ₄) ₃ Framework Structure with Enhanced Electrochemical Properties for Supercapacitors. Advanced Energy Materials, 2015, 5, 1500060.	10.2	42
75	Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9176-9189.	3.2	42
76	Ultralong H ₂ V ₃ O ₈ nanowire bundles as a promising cathode for lithium batteries. New Journal of Chemistry, 2014, 38, 2075-2080.	1.4	39
77	Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Research, 2016, 9, 1012-1021.	5.8	39
78	Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion. Materials Today Energy, 2020, 18, 100519.	2.5	39
79	Revealing the Origin of Highly Efficient Polysulfide Anchoring and Transformation on Anionâ€5ubstituted Vanadium Nitride Host. Advanced Functional Materials, 2021, 31, 2008034.	7.8	39
80	Strongly Coupled Pyridineâ€V ₂ O ₅ Â <i>n</i> H ₂ O Nanowires with Intercalation Pseudocapacitance and Stabilized Layer for High Energy Sodium Ion Capacitors. Small, 2019, 15, e1900379.	5.2	35
81	Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for Mg-Na hybrid-ion batteries. Nano Energy, 2019, 55, 526-533.	8.2	32
82	In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode. Nano Energy, 2016, 22, 406-413.	8.2	31
83	Hollow spherical LiNi0.5Mn1.5O4 built from polyhedra with high-rate performance via carbon nanotube modification. Science China Materials, 2016, 59, 95-103.	3.5	31
84	Activated carbon clothes for wide-voltage high-energy-density aqueous symmetric supercapacitors. Chinese Chemical Letters, 2020, 31, 1620-1624.	4.8	31
85	Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high-rate sodium-ion storage. Journal of Energy Chemistry, 2021, 55, 295-303.	7.1	31
86	Pseudocapacitive Anode Materials toward Highâ€Power Sodiumâ€ion Capacitors. Batteries and Supercaps, 2021, 4, 1567-1587.	2.4	31
87	Robust LiTi ₂ (PO ₄) ₃ microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. Journal of Materials Chemistry A, 2017, 5, 13950-13956.	5.2	30
88	Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance. Journal of the American Chemical Society, 2021, 143, 14097-14105.	6.6	30
89	Novel layered Li ₃ V ₂ (PO ₄) ₃ /rGO&C sheets as high-rate and long-life lithium ion battery cathodes. Chemical Communications, 2016, 52, 8730-8732.	2.2	27
90	Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 12259-12266.	5.2	26

#	Article	IF	CITATIONS
91	Carbon decorated Li3V2(PO4)3 for high-rate lithium-ion batteries: Electrochemical performance and charge compensation mechanism. Journal of Energy Chemistry, 2021, 53, 124-131.	7.1	23
92	Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Research, 2014, 7, 1604-1612.	5.8	21
93	Three-Dimensional LiMnPO ₄ ·Li ₃ V ₂ (PO ₄) ₃ /C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials &: Interfaces. 2015. 7. 17527-17534.	4.0	21
94	Versatile Synthesis of Mesoporous Crystalline TiO ₂ Materials by Monomicelle Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
95	Stable Ti ³⁺ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. Angewandte Chemie, 2020, 132, 17829-17836.	1.6	20
96	Mo ₂ C Nanoparticles Embedded in Carbon Nanowires with Surface Pseudocapacitance Enables Highâ€Energy and Highâ€Power Sodium Ion Capacitors. Small, 2022, 18, e2200805.	5.2	20
97	Nanowire Electrodes for Advanced Lithium Batteries. Frontiers in Energy Research, 2014, 2, .	1.2	19
98	Facile synthesis of MoO 2 @C nanoflowers as anode materials for sodium-ion batteries. Materials Research Bulletin, 2017, 94, 122-126.	2.7	19
99	New anatase phase VTi _{2.6} O _{7.2} ultrafine nanocrystals for high-performance rechargeable magnesium-based batteries. Journal of Materials Chemistry A, 2018, 6, 13901-13907.	5.2	19
100	The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions. Advanced Functional Materials, 2016, 26, 6555-6562.	7.8	18
101	In Operando Probing of Sodium-Incorporation in NASICON Nanomaterial: Asymmetric Reaction and Electrochemical Phase Diagram. Chemistry of Materials, 2017, 29, 8057-8064.	3.2	18
102	A Bowknot-like RuO ₂ quantum dots@V ₂ O ₅ cathode with largely improved electrochemical performance. Physical Chemistry Chemical Physics, 2014, 16, 18680-18685.	1.3	17
103	Understanding the electrochemical reaction mechanism of VS ₂ nanosheets in lithium-ion cells by multiple <i>in situ</i> and <i>ex situ</i> x-ray spectroscopy. Journal Physics D: Applied Physics, 2018, 51, 494001.	1.3	14
104	A Crystalline/Amorphous Cobalt(II,III) Oxide Hybrid Electrocatalyst for Lithium–Air Batteries. Energy Technology, 2017, 5, 568-579.	1.8	12
105	Electrochemical Nanowire Devices for Energy Storage. IEEE Nanotechnology Magazine, 2014, 13, 10-15.	1.1	9
106	Pseudocapacitive Grapheneâ€Wrapped Porous VO ₂ Microspheres for Ultrastable and Ultrahighâ€Rate Sodiumâ€Ion Storage. ChemElectroChem, 2019, 6, 1400-1406.	1.7	7
107	Siloxane-Modified, Silica-Based Ionogel as a Pseudosolid Electrolyte for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 154-163.	2.5	7
108	Energy Storage: Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage (Adv. Mater. 20/2017). Advanced Materials, 2017, 29, .	11.1	5

#	Article	IF	CITATIONS
109	Electrodes: Hierarchical Carbon Decorated Li ₃ V ₂ (PO ₄) ₃ as a Bicontinuous Cathode with Highâ€Rate Capability and Broad Temperature Adaptability (Adv. Energy Mater. 16/2014). Advanced Energy Materials, 2014, 4, .	10.2	4
110	Quadrupling the stored charge by extending the accessible density of states. CheM, 2022, 8, 2410-2418.	5.8	4
111	Polyol Solvation Effect on Tuning the Universal Growth of Binary Metal Oxide Nanodots@Graphene Oxide Heterostructures for Electrochemical Applications. Chemistry - A European Journal, 2019, 25, 14604-14612.	1.7	2
112	Cycling-Stable Cathodes: The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions (Adv. Funct. Mater. 36/2016). Advanced Functional Materials, 2016, 26, 6498-6498.	7.8	0
113	Versatile Syntheses ofÂMesoporous Crystalline TiO2 Materials from Monoâ€micelle Assembly. Angewandte Chemie, 0, , .	1.6	0