Fernanda Ortis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965506/publications.pdf

Version: 2024-02-01

40 papers

4,789 citations

186265 28 h-index 289244 40 g-index

41 all docs

41 docs citations

41 times ranked

5731 citing authors

#	Article	IF	CITATIONS
1	The role of inflammation in insulitis and \hat{l}^2 -cell loss in type 1 diabetes. Nature Reviews Endocrinology, 2009, 5, 219-226.	9.6	847
2	Initiation and execution of lipotoxic ER stress in pancreatic \hat{l}^2 -cells. Journal of Cell Science, 2008, 121, 2308-2318.	2.0	512
3	Cytokines Downregulate the Sarcoendoplasmic Reticulum Pump Ca2+ ATPase 2b and Deplete Endoplasmic Reticulum Ca2+, Leading to Induction of Endoplasmic Reticulum Stress in Pancreatic Â-Cells. Diabetes, 2005, 54, 452-461.	0.6	471
4	The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines. PLoS Genetics, 2012, 8, e1002552.	3.5	398
5	Selective Inhibition of Eukaryotic Translation Initiation Factor 2α Dephosphorylation Potentiates Fatty Acid-induced Endoplasmic Reticulum Stress and Causes Pancreatic β-Cell Dysfunction and Apoptosis. Journal of Biological Chemistry, 2007, 282, 3989-3997.	3.4	266
6	Glucagon-Like Peptide-1 Agonists Protect Pancreatic \hat{l}^2 -Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB. Diabetes, 2009, 58, 2851-2862.	0.6	202
7	Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia, 2010, 53, 1395-1405.	6.3	200
8	STAT1 Is a Master Regulator of Pancreatic \hat{l}^2 -Cell Apoptosis and Islet Inflammation. Journal of Biological Chemistry, 2011, 286, 929-941.	3.4	144
9	Signaling by IL- 1^2 +IFN- 1^3 and ER stress converge on DP5/Hrk activation: a novel mechanism for pancreatic 1^2 -cell apoptosis. Cell Death and Differentiation, 2009, 16, 1539-1550.	11.2	143
10	Induction of nuclear factor-l°B and its downstream genes by TNF-l± and IL-1l² has a pro-apoptotic role in pancreatic beta cells. Diabetologia, 2008, 51, 1213-1225.	6.3	136
11	Cytokines Interleukin- \hat{l}^2 and Tumor Necrosis Factor- \hat{l}^\pm Regulate Different Transcriptional and Alternative Splicing Networks in Primary \hat{l}^2 -Cells. Diabetes, 2010, 59, 358-374.	0.6	134
12	Cytokine-Induced Proapoptotic Gene Expression in Insulin-Producing Cells Is Related to Rapid, Sustained, and Nonoscillatory Nuclear Factor-κB Activation. Molecular Endocrinology, 2006, 20, 1867-1879.	3.7	124
13	p53 Up-regulated Modulator of Apoptosis (PUMA) Activation Contributes to Pancreatic Î ² -Cell Apoptosis Induced by Proinflammatory Cytokines and Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2010, 285, 19910-19920.	3.4	108
14	Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia, 2010, 53, 1120-1130.	6.3	103
15	MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic \hat{l}^2 -cell responses to the viral by-product double-stranded RNA. Human Molecular Genetics, 2010, 19, 135-146.	2.9	93
16	Cell-permeable peptides induce dose- and length-dependent cytotoxic effects. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2222-2234.	2.6	92
17	Transcriptional Regulation of the Endoplasmic Reticulum Stress Gene Chop in Pancreatic Insulin-Producing Cells. Diabetes, 2007, 56, 1069-1077.	0.6	86
18	Loss of PPAR \hat{I}^3 in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. Journal of Nutritional Biochemistry, 2008, 19, 216-228.	4.2	75

#	Article	lF	CITATIONS
19	Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Journal of Molecular Endocrinology, 2016, 57, R1-R17.	2.5	70
20	Differential usage of NFâ€PB activating signals by ILâ€1β and TNF‣ in pancreatic beta cells. FEBS Letters, 2012 586, 984-989.	² , _{2.8}	58
21	Interactions between Cationic Vesicles and Cultured Mammalian Cells. Langmuir, 1997, 13, 2215-2218.	3.5	56
22	Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and \hat{l}^2 -cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E681-8.	7.1	55
23	JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells. PLoS ONE, 2008, 3, e3030.	2.5	52
24	Use of a systems biology approach to understand pancreatic \hat{l}^2 -cell death in TypeÂ1 diabetes. Biochemical Society Transactions, 2008, 36, 321-327.	3.4	42
25	The non-canonical NF-κB pathway is induced by cytokines in pancreatic beta cells and contributes to cell death and proinflammatory responses in vitro. Diabetologia, 2016, 59, 512-521.	6.3	42
26	The non-canonical NF-κB pathway and its contribution to β-cell failure in diabetes. Journal of Molecular Endocrinology, 2018, 61, F1-F6.	2.5	40
27	Pancreatic \hat{I}^2 -cells activate a JunB/ATF3-dependent survival pathway during inflammation. Oncogene, 2012, 31, 1723-1732.	5.9	38
28	JunB protects β-cells from lipotoxicity via the XBP1–AKT pathway. Cell Death and Differentiation, 2014, 21, 1313-1324.	11.2	37
29	A20 Inhibits \hat{I}^2 -Cell Apoptosis by Multiple Mechanisms and Predicts Residual \hat{I}^2 -Cell Function in Type 1 Diabetes. Molecular Endocrinology, 2016, 30, 48-61.	3.7	28
30	Lipotoxicity and \hat{l}^2 -Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells, 2021, 10, 3328.	4.1	26
31	Augmented $<$ b $<$ i $>$ $\hat{l}^2 <$ /i > -Cell Function and Mass in Glucocorticoid-Treated Rodents Are Associated with Increased Islet Ir- $<$ i $>$ $\hat{l}^2 <$ /i $>$ $<$ /b $>$ /AKT/mTOR and Decreased AMPK/ACC and AS160 Signaling. International Journal of Endocrinology, 2014, 2014, 1-14.	1.5	25
32	Metabolic memory of $\tilde{\text{A}}\ddot{\text{Y}}$ -cells controls insulin secretion and is mediated by CaMKIIa. Molecular Metabolism, 2014, 3, 484-489.	6.5	21
33	Transient NADPH oxidase 2-dependent H2O2 production drives early palmitate-induced lipotoxicity in pancreatic islets. Free Radical Biology and Medicine, 2021, 162, 1-13.	2.9	18
34	Prolactin protects against cytokine-induced beta-cell death by NFκB and JNK inhibition. Journal of Molecular Endocrinology, 2018, 61, 25-36.	2.5	14
35	Identification of New Pancreatic Beta Cell Targets for In Vivo Imaging by a Systems Biology Approach. Current Pharmaceutical Design, 2010, 16, 1609-1618.	1.9	11
36	Immunopurification of Polyclonal Antibodies to Recombinant Proteins of the Same Gene Family. BioTechniques, 1996, 21, 986-990.	1.8	9

#	Article	IF	CITATIONS
37	Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts \hat{l}^2 -Cell Function and Survival. Antioxidants, 2021, 10, 1305.	5.1	5
38	ARHGAP21 Acts as an Inhibitor of the Glucose-Stimulated Insulin Secretion Process. Frontiers in Endocrinology, 2020, 11, 599165.	3.5	3
39	Beneficial effects of physical exercise for βâ€cell maintenance in a type 1 diabetes mellitus animal model. Experimental Physiology, 2021, 106, 1482-1497.	2.0	2
40	A role for NADPH oxidase in mediating lipotoxicity and inflammation in \hat{l}^2 -cells. Free Radical Biology and Medicine, 2021, 177, S112.	2.9	0