
## Arthur Konnerth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6964029/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Seminars in Cell and<br>Developmental Biology, 2023, 139, 24-34.                                                                                   | 5.0  | 15        |
| 2  | Where have all the Orais gone? Commentary on "Orai1 channels are essential for amplification of glutamate-evoked Ca2+ signals in dendritic spines to regulate working and associative memory― Cell Calcium, 2021, 96, 102372. | 2.4  | 3         |
| 3  | In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors. Computational and Structural Biotechnology Journal, 2021, 19, 2477-2485.                                              | 4.1  | 1         |
| 4  | Population imaging of synaptically released glutamate in mouse hippocampal slices. STAR Protocols, 2021, 2, 100877.                                                                                                           | 1.2  | 3         |
| 5  | Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nature Neuroscience, 2021, 24, 1686-1698.                                               | 14.8 | 31        |
| 6  | Single-neuron representation of learned complex sounds in the auditory cortex. Nature Communications, 2020, 11, 4361.                                                                                                         | 12.8 | 29        |
| 7  | A vicious cycle of β amyloid–dependent neuronal hyperactivation. Science, 2019, 365, 559-565.                                                                                                                                 | 12.6 | 407       |
| 8  | Two types of functionally distinct Ca2+ stores in hippocampal neurons. Nature Communications, 2019, 10, 3223.                                                                                                                 | 12.8 | 34        |
| 9  | Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nature<br>Neuroscience, 2019, 22, 1731-1742.                                                                                   | 14.8 | 181       |
| 10 | High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods, 2019, 16, 649-657.                                                                                       | 19.0 | 843       |
| 11 | InÂVivo Functional Mapping of a Cortical Column at Single-Neuron Resolution. Cell Reports, 2019, 27, 1319-1326.e5.                                                                                                            | 6.4  | 43        |
| 12 | MATRIEX imaging: multiarea two-photon real-time in vivo explorer. Light: Science and Applications, 2019, 8, 109.                                                                                                              | 16.6 | 26        |
| 13 | Deep Two-Photon Imaging In Vivo with a Red-Shifted Calcium Indicator. Methods in Molecular Biology, 2019, 1929, 15-26.                                                                                                        | 0.9  | 4         |
| 14 | Abolishing cAMP sensitivity in HCN2 pacemaker channels induces generalized seizures. JCI Insight, 2019,<br>4, .                                                                                                               | 5.0  | 23        |
| 15 | What Happens with the Circuit in Alzheimer's Disease in Mice and Humans?. Annual Review of Neuroscience, 2018, 41, 277-297.                                                                                                   | 10.7 | 154       |
| 16 | A Visual-Cue-Dependent Memory Circuit for Place Navigation. Neuron, 2018, 99, 47-55.e4.                                                                                                                                       | 8.1  | 53        |
| 17 | <i>In vivo</i> deep twoâ€photon imaging of neural circuits with the fluorescent Ca <sup>2+</sup><br>indicator Calâ€590. Journal of Physiology, 2017, 595, 3097-3105.                                                          | 2.9  | 16        |
| 18 | Improved deep two-photon calcium imaging in vivo. Cell Calcium, 2017, 64, 29-35.                                                                                                                                              | 2.4  | 42        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | BACE inhibition-dependent repair of Alzheimer's pathophysiology. Proceedings of the National<br>Academy of Sciences of the United States of America, 2017, 114, 8631-8636.                                              | 7.1  | 93        |
| 20 | Impairments of neural circuit function in Alzheimer's disease. Philosophical Transactions of the Royal<br>Society B: Biological Sciences, 2016, 371, 20150429.                                                          | 4.0  | 241       |
| 21 | Synaptic dynamics and neuronal network connectivity are reflected in the distribution of times in Up states. Frontiers in Computational Neuroscience, 2015, 9, 96.                                                      | 2.1  | 15        |
| 22 | Neuronal hyperactivity – A key defect in Alzheimer's disease?. BioEssays, 2015, 37, 624-632.                                                                                                                            | 2.5  | 182       |
| 23 | TRPC3â€dependent synaptic transmission in central mammalian neurons. Journal of Molecular Medicine, 2015, 93, 983-989.                                                                                                  | 3.9  | 21        |
| 24 | Rescue of long-range circuit dysfunction in Alzheimer's disease models. Nature Neuroscience, 2015, 18, 1623-1630.                                                                                                       | 14.8 | 179       |
| 25 | ÎSecretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015, 526, 443-447.                                                                                                                 | 27.8 | 308       |
| 26 | Deep two-photon brain imaging with a red-shifted fluorometric Ca <sup>2+</sup> indicator.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11377-11382.                   | 7.1  | 100       |
| 27 | Decreased amyloid-β and increased neuronal hyperactivity by immunotherapy in Alzheimer's models.<br>Nature Neuroscience, 2015, 18, 1725-1727.                                                                           | 14.8 | 121       |
| 28 | Dendritic function in vivo. Trends in Neurosciences, 2015, 38, 45-54.                                                                                                                                                   | 8.6  | 91        |
| 29 | An assay to image neuronal microtubule dynamics in mice. Nature Communications, 2014, 5, 4827.                                                                                                                          | 12.8 | 132       |
| 30 | NMDA Receptor-Dependent Multidendrite Ca 2+ Spikes Required for Hippocampal Burst Firing InÂVivo.<br>Neuron, 2014, 81, 1274-1281.                                                                                       | 8.1  | 162       |
| 31 | Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 463-468. | 7.1  | 36        |
| 32 | STIM1 Controls Neuronal Ca2+ Signaling, mGluR1-Dependent Synaptic Transmission, and Cerebellar<br>Motor Behavior. Neuron, 2014, 82, 635-644.                                                                            | 8.1  | 162       |
| 33 | Linear integration of spine Ca <sup>2+</sup> signals in layer 4 cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9277-9282.                        | 7.1  | 55        |
| 34 | Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13618-13623.         | 7.1  | 70        |
| 35 | Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves InÂVivo. Neuron, 2013, 77, 1136-1150.                                                                                                            | 8.1  | 217       |
| 36 | Kainate Receptor-Induced Retrograde Inhibition of Glutamatergic Transmission in Vasopressin<br>Neurons. Journal of Neuroscience, 2012, 32, 1301-1310.                                                                   | 3.6  | 4         |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Imaging Calcium in Neurons. Neuron, 2012, 73, 862-885.                                                                                                                                                                       | 8.1  | 1,080     |
| 38 | Soundâ€evoked network calcium transients in mouse auditory cortex <i>in vivo</i> . Journal of Physiology, 2012, 590, 899-918.                                                                                                | 2.9  | 60        |
| 39 | Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease. Nature Communications, 2012, 3, 774.                                                                                                  | 12.8 | 116       |
| 40 | LOTOS-based two-photon calcium imaging of dendritic spines in vivo. Nature Protocols, 2012, 7, 1818-1829.                                                                                                                    | 12.0 | 67        |
| 41 | Dendritic spines: from structure to <i>in vivo</i> function. EMBO Reports, 2012, 13, 699-708.                                                                                                                                | 4.5  | 248       |
| 42 | Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer's<br>disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109,<br>8740-8745. | 7.1  | 541       |
| 43 | Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15420-15425.                                     | 7.1  | 127       |
| 44 | Functional mapping of single spines in cortical neurons in vivo. Nature, 2011, 475, 501-505.                                                                                                                                 | 27.8 | 360       |
| 45 | In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nature<br>Protocols, 2011, 6, 28-35.                                                                                             | 12.0 | 156       |
| 46 | Development of Direction Selectivity in Mouse Cortical Neurons. Neuron, 2011, 71, 425-432.                                                                                                                                   | 8.1  | 156       |
| 47 | Tracking Stem Cell Differentiation in the Setting of Automated Optogenetic Stimulation. Stem Cells, 2011, 29, 78-88.                                                                                                         | 3.2  | 85        |
| 48 | Dendritic organization of sensory input to cortical neurons in vivo. Nature, 2010, 464, 1307-1312.                                                                                                                           | 27.8 | 464       |
| 49 | Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons.<br>Journal of Physiology, 2010, 588, 1085-1096.                                                                        | 2.9  | 68        |
| 50 | Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12323-12328.                  | 7.1  | 91        |
| 51 | In Vivo Two-Photon Calcium Imaging Using Multicell Bolus Loading. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5482.                                                                                                    | 0.3  | 11        |
| 52 | Sparsification of neuronal activity in the visual cortex at eye-opening. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15049-15054.                                            | 7.1  | 240       |
| 53 | Genetically encoded Ca2+ sensors come of age. Nature Methods, 2008, 5, 761-762.                                                                                                                                              | 19.0 | 18        |
| 54 | Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer's Disease.<br>Science, 2008, 321, 1686-1689.                                                                                              | 12.6 | 882       |

| #  | Article                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination. Neuron, 2008, 59, 392-398.                                                        | 8.1  | 356       |
| 56 | Homosynaptic Long-Term Synaptic Potentiation of the "Winner―Climbing Fiber Synapse in Developing<br>Purkinje Cells. Journal of Neuroscience, 2008, 28, 798-807. | 3.6  | 79        |
| 57 | 4D brain signaling. Nature Methods, 2007, 4, 19-20.                                                                                                             | 19.0 | 1         |
| 58 | Improved calcium imaging in transgenic mice expressing a troponin C–based biosensor. Nature<br>Methods, 2007, 4, 127-129.                                       | 19.0 | 177       |
| 59 | Troponin C-based biosensors: A new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium, 2007, 42, 351-361. | 2.4  | 62        |
| 60 | Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell<br>Biology, 2007, 35, 87-101.                                   | 3.2  | 61        |
| 61 | Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nature<br>Protocols, 2006, 1, 380-386.                                    | 12.0 | 237       |
| 62 | Quantitative single-cell RT-PCR and Ca2+ imaging in brain slices. Pflugers Archiv European Journal of<br>Physiology, 2006, 451, 716-726.                        | 2.8  | 19        |
| 63 | Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Archiv European<br>Journal of Physiology, 2006, 453, 385-396.                  | 2.8  | 87        |
| 64 | Dendritic spikes and activity-dependent synaptic plasticity. Cell and Tissue Research, 2006, 326, 369-377.                                                      | 2.9  | 37        |
| 65 | Cortical calcium waves in resting newborn mice. Nature Neuroscience, 2005, 8, 988-990.                                                                          | 14.8 | 249       |
| 66 | Determinants of postsynaptic Ca2+ signaling in Purkinje neurons. Cell Calcium, 2005, 37, 459-466.                                                               | 2.4  | 88        |
| 67 | Neurotrophin-Mediated Rapid Signaling in the Central Nervous System: Mechanisms and Functions.<br>Physiology, 2005, 20, 70-78.                                  | 3.1  | 188       |
| 68 | Single-shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex. Journal of<br>Physiology, 2004, 560, 27-36.                             | 2.9  | 82        |
| 69 | Neurotrophin action on a rapid timescale. Current Opinion in Neurobiology, 2004, 14, 558-563.                                                                   | 4.2  | 80        |
| 70 | From modulator to mediator: rapid effects of BDNF on ion channels. BioEssays, 2004, 26, 1185-1194.                                                              | 2.5  | 103       |
| 71 | In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7319-7324. | 7.1  | 1,208     |
| 72 | Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO Journal, 2003, 22, 216-224.                                             | 7.8  | 471       |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature, 2003, 426, 74-78.                                                                                                                                | 27.8 | 326       |
| 74 | Impairment of LTD and cerebellar learning by Purkinje cell–specific ablation of cGMP-dependent<br>protein kinase I. Journal of Cell Biology, 2003, 163, 295-302.                                                                          | 5.2  | 136       |
| 75 | Calbindin in Cerebellar Purkinje Cells Is a Critical Determinant of the Precision of Motor<br>Coordination. Journal of Neuroscience, 2003, 23, 3469-3477.                                                                                 | 3.6  | 158       |
| 76 | Functional Reconstitution of Vascular Smooth Muscle Cells With cGMP-Dependent Protein Kinase I<br>Isoforms. Circulation Research, 2002, 90, 1080-1086.                                                                                    | 4.5  | 115       |
| 77 | Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science, 2002, 295, 1729-1734.                                                                                                                                            | 12.6 | 427       |
| 78 | Two-photon chloride imaging in neurons of brain slices. Pflugers Archiv European Journal of<br>Physiology, 2002, 445, 357-365.                                                                                                            | 2.8  | 67        |
| 79 | Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. Nature, 2002, 419, 687-693.                                                                                                                                        | 27.8 | 250       |
| 80 | Stores Not Just for Storage. Neuron, 2001, 31, 519-522.                                                                                                                                                                                   | 8.1  | 210       |
| 81 | Impairment of Mossy Fiber Long-Term Potentiation and Associative Learning in Pituitary Adenylate<br>Cyclase Activating Polypeptide Type I Receptor-Deficient Mice. Journal of Neuroscience, 2001, 21,<br>5520-5527.                       | 3.6  | 167       |
| 82 | NMDA Receptor-Mediated Na <sup>+</sup> Signals in Spines and Dendrites. Journal of Neuroscience, 2001, 21, 4207-4214.                                                                                                                     | 3.6  | 155       |
| 83 | Roles of Glutamate Receptor δ2 Subunit (GluRδ2) and Metabotropic Glutamate Receptor Subtype 1<br>(mGluR1) in Climbing Fiber Synapse Elimination during Postnatal Cerebellar Development. Journal of<br>Neuroscience, 2001, 21, 9701-9712. | 3.6  | 152       |
| 84 | Exciting glial oscillations. Nature Neuroscience, 2001, 4, 773-774.                                                                                                                                                                       | 14.8 | 11        |
| 85 | GABAâ€mediated Ca 2+ signalling in developing rat cerebellar Purkinje neurones. Journal of Physiology,<br>2001, 536, 429-437.                                                                                                             | 2.9  | 82        |
| 86 | Large-scale oscillatory calcium waves in the immature cortex. Nature Neuroscience, 2000, 3, 452-459.                                                                                                                                      | 14.8 | 429       |
| 87 | Self-regulating synapses. Nature, 2000, 405, 413-414.                                                                                                                                                                                     | 27.8 | 8         |
| 88 | NMDA Receptor-Mediated Subthreshold Ca <sup>2+</sup> Signals in Spines of Hippocampal Neurons.<br>Journal of Neuroscience, 2000, 20, 1791-1799.                                                                                           | 3.6  | 262       |
| 89 | Neurotrophin-evoked rapid excitation of central neurons. Progress in Brain Research, 2000, 128, 243-249.                                                                                                                                  | 1.4  | 10        |
| 90 | Neurotrophin-evoked rapid excitation through TrkB receptors. Nature, 1999, 401, 918-921.                                                                                                                                                  | 27.8 | 498       |

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | A new class of synaptic response involving calcium release in dendritic spines. Nature, 1998, 396, 757-760.                                                                            | 27.8 | 390       |
| 92  | Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo. Cell, 1998, 92, 279-289.                                                                    | 28.9 | 419       |
| 93  | Dendritic signal integration. Current Opinion in Neurobiology, 1997, 7, 385-390.                                                                                                       | 4.2  | 78        |
| 94  | Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.<br>Journal of Physiology, 1997, 502, 13-30.                                            | 2.9  | 211       |
| 95  | Ca2+signals underlying synaptic plasticity in cerebellar Purkinje neurones. Seminars in Neuroscience,<br>1996, 8, 271-279.                                                             | 2.2  | 0         |
| 96  | Localized calcium signalling and neuronal integration in cerebellar Purkinje neurones. Cell Calcium, 1996, 20, 215-226.                                                                | 2.4  | 53        |
| 97  | Long-term potentiation and functional synapse induction in developing hippocampus. Nature, 1996, 381, 71-75.                                                                           | 27.8 | 716       |
| 98  | Intrazelluläe Calciumregulation - Neue Einblicke in die neuronale Signalverarbeitung. E-Neuroforum,<br>1995, 1, 18-23.                                                                 | 0.1  | 0         |
| 99  | Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons.<br>Nature, 1995, 373, 155-158.                                                      | 27.8 | 336       |
| 100 | Depolarization-induced calcium signals in the somata of cerebellar Purkinje neurons. Neuroscience<br>Research, 1995, 24, 87-95.                                                        | 1.9  | 18        |
| 101 | Calcium requirement of long-term depression and rebound potentiation in cerebellar Purkinje neurons. Seminars in Cell Biology, 1994, 5, 243-250.                                       | 3.4  | 10        |
| 102 | GABA-mediated synaptic transmission in neuroendocrine cells: a patch-clamp study in a pituitary slice preparation. Pflugers Archiv European Journal of Physiology, 1992, 421, 364-373. | 2.8  | 25        |
| 103 | Patch-clamping in slices of mammalian CNS. Trends in Neurosciences, 1990, 13, 321-323.                                                                                                 | 8.6  | 70        |
| 104 | Voltage-sensitive dyes measure potential changes in axons and glia of the frog optic nerve.<br>Neuroscience Letters, 1986, 66, 49-54.                                                  | 2.1  | 43        |
| 105 | Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature, 1983, 302, 432-434.                                               | 27.8 | 398       |
| 106 | Presynaptic involvement in frequency facilitation in the hippocampal slice. Neuroscience Letters, 1983, 42, 255-260.                                                                   | 2.1  | 36        |