Yuko S Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6963648/publications.pdf

Version: 2024-02-01

34 papers

3,123 citations

18 h-index

430874

28 g-index

34 all docs

34 docs citations

times ranked

34

3885 citing authors

#	Article	IF	Citations
1	Between plasmonics and surface-enhanced resonant Raman spectroscopy: toward single-molecule strong coupling at a hotspot. Nanoscale, 2021, 13, 1566-1580.	5.6	27
2	Propagation mechanism of surface plasmons coupled with surface-enhanced resonant Raman scattering light through a one-dimensional hotspot along a silver nanowire dimer junction. Physical Review B, 2021, 103, .	3.2	9
3	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
4	Anti-crossing property of strong coupling system of silver nanoparticle dimers coated with thin dye molecular films analyzed by electromagnetism. Journal of Chemical Physics, 2020, 152, 054710.	3.0	12
5	Absorption cross-section spectroscopy of a single strong-coupling system between plasmon and molecular exciton resonance using a single silver nanoparticle dimer generating surface-enhanced resonant Raman scattering. Physical Review B, 2019, 99, .	3.2	17
6	Active Tuning of Strong Coupling States between Dye Excitons and Localized Surface Plasmons via Electrochemical Potential Control. ACS Photonics, 2018, 5, 788-796.	6.6	43
7	Reproduction of surface-enhanced resonant Raman scattering and fluorescence spectra of a strong coupling system composed of a single silver nanoparticle dimer and a few dye molecules. Journal of Chemical Physics, 2018, 149, 244701.	3.0	20
8	Strong interaction between dye molecule and electromagnetic field localized around 1 Nm3 at gaps of nanoparticle dimers by plasmon resonance. AIP Conference Proceedings, 2017, , .	0.4	0
9	One-dimensional plasmonic hotspots located between silver nanowire dimers evaluated by surface-enhanced resonance Raman scattering. Physical Review B, 2017, 95, .	3.2	43
10	Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics. Chemical Society Reviews, 2017, 46, 3904-3921.	38.1	113
11	Plasmon-Enhanced Spectroscopy: Fundamentals and Applications. Journal of the Japan Society of Colour Material, 2017, 90, 420-425.	0.1	O
12	Evaluation of probes for tip-enhanced Raman scattering by darkfield microspectroscopy and calculation. , $2017, \ldots$		0
13	Near-Field Interaction between Single Molecule and an Electromagnetic Field at "Hotspot―Generated by Plasmon Resonance. ACS Symposium Series, 2016, , 23-37.	0.5	1
14	Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes. Applied Physics Letters, 2016, 108, .	3.3	15
15	Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Analyst, The, 2016, 141, 5000-5009.	3.5	42
16	Formation mechanism of plasmonic silver nanohexagonal particles made by galvanic displacement reaction. RSC Advances, 2016, 6, 31454-31461.	3.6	10
17	Why and how do the shapes of surfaceâ€enhanced Raman scattering spectra change? Recent progress from mechanistic studies. Journal of Raman Spectroscopy, 2016, 47, 78-88.	2.5	121
18	Fluctuating single $\langle i \rangle sp \langle i \rangle 2$ carbon clusters at single hotspots of silver nanoparticle dimers investigated by surface-enhanced resonance Raman scattering. AIP Advances, 2015, 5, .	1.3	23

#	Article	IF	CITATIONS
19	Different behaviour of molecules in dark SERS state on colloidal Ag nanoparticles estimated by truncated power law analysis of blinking SERS. Physical Chemistry Chemical Physics, 2015, 17, 21204-21210.	2.8	18
20	Single-molecular surface-enhanced resonance Raman scattering as a quantitative probe of local electromagnetic field: The case of strong coupling between plasmonic and excitonic resonance. Physical Review B, 2014, 89, .	3.2	53
21	Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing. Frontiers of Physics, 2014, 9, 31-46.	5. 0	71
22	Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 21, 81-104.	11.6	131
23	A simple method for evaluation of optical scattering effect on the Raman signal of a sample beneath an Intralipid layer. Vibrational Spectroscopy, 2014, 74, 132-136.	2.2	1
24	Direct conversion of silver complexes to nanoscale hexagonal columns on a copper alloy for plasmonic applications. Physical Chemistry Chemical Physics, 2013, 15, 14611.	2.8	39
25	Plasmonic Imaging of Brownian Motion of Single DNA Molecules Spontaneously Binding to Ag Nanoparticles. Nano Letters, 2013, 13, 1877-1882.	9.1	14
26	Plasmonic staining of DNA molecules with photo-induced Ag nanoparticles monitored using dark-field microscopy. Physical Chemistry Chemical Physics, 2013, 15, 10316.	2.8	9
27	Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules. Physical Review B, 2013, 87, .	3.2	39
28	Noninvasive Subsurface Analysis Using Multiple Miniaturized Raman Probes, Part I: Basic Study of Thin-Layered Transparent Models of Biomedical Tissues. Applied Spectroscopy, 2011, 65, 844-848.	2.2	4
29	Prospect of Optical Biopsy Based on Raman Spectroscopy. Nippon Laser Igakkaishi, 2010, 31, 420-427.	0.0	O
30	Raman study of brain functions in live mice and rats: A pilot study. Vibrational Spectroscopy, 2009, 50, 125-130.	2.2	23
31	High Axial Resolution Raman Probe Made of a Single Hollow Optical Fiber. Applied Spectroscopy, 2009, 63, 103-107.	2.2	41
32	Noninvasive subsurface analyzing technique using multiple miniaturized Raman probes. Proceedings of SPIE, 2009, , .	0.8	0
33	Verifying of endocrine disruptor chemical affect to the mouse testes: can raman spectroscopy support histology study?. Proceedings of SPIE, 2009, , .	0.8	0
34	Subsurface sensing of biomedical tissues using a miniaturized Raman probe: Study of thin-layered model samples. Analytica Chimica Acta, 2008, 619, 8-13.	5.4	31