Michael B Yaffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6963588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of Alteplase for Respiratory Failure in SARS-CoV-2 COVID-19. Chest, 2022, 161, 710-727.	0.8	36
2	Novel Macrocyclic Peptidomimetics Targeting the Polo-Box Domain of Polo-Like Kinase 1. Journal of Medicinal Chemistry, 2022, 65, 1915-1932.	6.4	5
3	MUlticenter STudy of tissue plasminogen activator (alteplase) use in COVIDâ€19 severe respiratory failure (MUST COVID): AÂretrospective cohort study. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12669.	2.3	6
4	A phase 2 study of onvansertib in combination with abiraterone and prednisone in patients with metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2022, 40, TPS219-TPS219.	1.6	3
5	Immunogenic cell stress and injury versus immunogenic cell death: implications for improving cancer treatment with immune checkpoint blockade. Molecular and Cellular Oncology, 2022, 9, 2039038.	0.7	0
6	An Integrated Pharmacological, Structural, and Genetic Analysis of Extracellular Versus Intracellular ROS Production in Neutrophils. Journal of Molecular Biology, 2022, 434, 167533.	4.2	2
7	Proteomics of Coagulopathy Following Injury Reveals Limitations of Using Laboratory Assessment to Define Trauma-Induced Coagulopathy to Predict Massive Transfusion. Annals of Surgery Open, 2022, 3, e167.	1.4	2
8	Monocyte exocytosis of mitochondrial danger-associated molecular patterns in sepsis suppresses neutrophil chemotaxis. Journal of Trauma and Acute Care Surgery, 2021, 90, 46-53.	2.1	20
9	Inducing DNA damage through R-loops to kill cancer cells. Molecular and Cellular Oncology, 2021, 8, 1848233.	0.7	4
10	A phase II study of onvansertib in combination with abiraterone and prednisone in patients with metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2021, 39, TPS186-TPS186.	1.6	1
11	Mechanisms Driving Neutrophil-Induced T-cell Immunoparalysis in Ovarian Cancer. Cancer Immunology Research, 2021, 9, 790-810.	3.4	29
12	Trauma-induced heme release increases susceptibility to bacterial infection. JCI Insight, 2021, 6, .	5.0	13
13	Design and synthesis of a new orthogonally protected glutamic acid analog and its use in the preparation of high affinity polo-like kinase 1 polo-box domain – binding peptide macrocycles. Organic and Biomolecular Chemistry, 2021, 19, 7843-7854.	2.8	5
14	The injury response to DNA damage in live tumor cells promotes antitumor immunity. Science Signaling, 2021, 14, eabc4764.	3.6	32
15	Multi-omic analysis in injured humans: Patterns align with outcomes and treatment responses. Cell Reports Medicine, 2021, 2, 100478.	6.5	35
16	Formyl Peptide Receptor-1 Blockade Prevents Receptor Regulation by Mitochondrial Danger-Associated Molecular Patterns and Preserves Neutrophil Function After Trauma. Critical Care Medicine, 2020, 48, e123-e132.	0.9	20
17	Monitoring and modeling of lymphocytic leukemia cell bioenergetics reveals decreased ATP synthesis during cell division. Nature Communications, 2020, 11, 4983.	12.8	19
18	Study of alteplase for respiratory failure in severe acute respiratory syndrome coronavirus 2/COVIDâ€19: Study design of the phase IIa STARS trial. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 984-996.	2.3	19

#	Article	IF	CITATIONS
19	Are redox changes a critical switch for mitotic progression?. Molecular and Cellular Oncology, 2020, 7, 1832419.	0.7	3
20	Redox priming promotes Aurora A activation during mitosis. Science Signaling, 2020, 13, .	3.6	18
21	COVID-19: All the wrong moves in all the wrong places. Science Signaling, 2020, 13, .	3.6	5
22	Multiplexed Plasma Immune Mediator Signatures Can Differentiate Sepsis From NonInfective SIRS. Annals of Surgery, 2020, 272, 604-610.	4.2	10
23	BRD4 prevents the accumulation of R-loops and protects against transcription–replication collision events and DNA damage. Nature Communications, 2020, 11, 4083.	12.8	83
24	Enhancing chemotherapy response through augmented synthetic lethality by co-targeting nucleotide excision repair and cell-cycle checkpoints. Nature Communications, 2020, 11, 4124.	12.8	20
25	Transite: A Computational Motif-Based Analysis Platform That Identifies RNA-Binding Proteins Modulating Changes in Gene Expression. Cell Reports, 2020, 32, 108064.	6.4	30
26	Coagulopathy signature precedes and predicts severity of endâ€organ heat stroke pathology in a mouse model. Journal of Thrombosis and Haemostasis, 2020, 18, 1900-1910.	3.8	30
27	Fibrinolytic therapy for refractory COVIDâ€19 acute respiratory distress syndrome: Scientific rationale and review. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 524-531.	2.3	37
28	Is there a role for tissue plasminogen activator as a novel treatment for refractory COVID-19 associated acute respiratory distress syndrome?. Journal of Trauma and Acute Care Surgery, 2020, 88, 713-714.	2.1	77
29	NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity. Oncogene, 2020, 39, 5252-5266.	5.9	12
30	Circulating Factors in Trauma Plasma Activate Specific Human Immune Cell Subsets. Injury, 2020, 51, 819-829.	1.7	8
31	Tissue plasminogen activator (tPA) treatment for COVIDâ€19 associated acute respiratory distress syndrome (ARDS): A case series. Journal of Thrombosis and Haemostasis, 2020, 18, 1752-1755.	3.8	456
32	Modern Management of Bleeding, Clotting, and Coagulopathy in Trauma Patients: What Is the Role of Viscoelastic Assays?. Current Trauma Reports, 2020, 6, 69-81.	1.3	9
33	ISTH interim guidance on recognition and management of coagulopathy in COVIDâ€19: A comment. Journal of Thrombosis and Haemostasis, 2020, 18, 2060-2063.	3.8	178
34	Salvage use of tissue plasminogen activator (tPA) in the setting of acute respiratory distress syndrome (ARDS) due to COVID-19 in the USA: a Markov decision analysis. World Journal of Emergency Surgery, 2020, 15, 29.	5.0	33
35	MAPKAP Kinase-2 Drives Expression of Angiogenic Factors by Tumor-Associated Macrophages in a Model of Inflammation-Induced Colon Cancer. Frontiers in Immunology, 2020, 11, 607891.	4.8	16
36	Tranexamic acid is associated with reduced complement activation in trauma patients with hemorrhagic shock and hyperfibrinolysis on thromboelastography. Blood Coagulation and Fibrinolysis, 2020, 31, 578-582.	1.0	11

#	Article	IF	CITATIONS
37	Intratumoral administration of DNA-damaging chemotherapy-treated tumor cells to enhance therapeutic benefit of systemic immune checkpoint blockade in mouse cancer models Journal of Clinical Oncology, 2020, 38, 77-77.	1.6	0
38	VISAGE Reveals a Targetable Mitotic Spindle Vulnerability in Cancer Cells. Cell Systems, 2019, 9, 74-92.e8.	6.2	24
39	Substrate-based kinase activity inference identifies MK2 as driver of colitis. Integrative Biology (United) Tj ETQq1	1 0,78431 1.3	4 rgBT /Ove 21
40	Why geneticists stole cancer research even though cancer is primarily a signaling disease. Science Signaling, 2019, 12, .	3.6	52
41	TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nature Communications, 2019, 10, 421.	12.8	35
42	Clot activators do not expedite the time to predict massive transfusion in trauma patients analyzed with tissue plasminogen activator thrombelastography. Surgery, 2019, 166, 408-415.	1.9	5
43	Atlas Drugged. Cell, 2019, 177, 803-805.	28.9	1
44	Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. PLoS Biology, 2019, 17, e2006540.	5.6	41
45	Pan-TAM Tyrosine Kinase Inhibitor BMS-777607 Enhances Anti–PD-1 mAb Efficacy in a Murine Model of Triple-Negative Breast Cancer. Cancer Research, 2019, 79, 2669-2683.	0.9	86
46	ROS and Oxidative Stress Are Elevated in Mitosis during Asynchronous Cell Cycle Progression and Are Exacerbated by Mitotic Arrest. Cell Systems, 2019, 8, 163-167.e2.	6.2	92
47	Acidification of Tumor at Stromal Boundaries Drives Transcriptome Alterations Associated with Aggressive Phenotypes. Cancer Research, 2019, 79, 1952-1966.	0.9	157
48	Comprehensive substrate specificity profiling of the human Nek kinome reveals unexpected signaling outputs. ELife, 2019, 8, .	6.0	35
49	MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4236-E4244.	7.1	78
50	RNAâ€₽eptide nanoplexes drug DNA damage pathways in highâ€grade serous ovarian tumors. Bioengineering and Translational Medicine, 2018, 3, 26-36.	7.1	12
51	Predicting the future of signaling for 2018. Science Signaling, 2018, 11, .	3.6	1
52	CADD-03. A VERSATILE AND MODULAR TARGETED NANOPARTICLE PLATFORM FOR DELIVERY OF COMBINATION THERAPIES TO ADULT AND PEDIATRIC CNS TUMORS. Neuro-Oncology, 2018, 20, vi277-vi277.	1.2	0
53	Hierarchical Organization Endows the Kinase Domain with Regulatory Plasticity. Cell Systems, 2018, 7, 371-383.e4.	6.2	20
54	Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nature Communications, 2018, 9, 1991.	12.8	229

#	Article	IF	CITATIONS
55	Modeling chemotherapy-induced stress to identify rational combination therapies in the DNA damage response pathway. Science Signaling, 2018, 11, .	3.6	46
56	Histidine N(Ï")-cyclized macrocycles as a new genre of polo-like kinase 1 polo-box domain-binding inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3202-3205.	2.2	10
57	Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma. Cancer Cell, 2017, 32, 411-426.e11.	16.8	161
58	Kicking Genomic Profiling to the Curb: How Re-wiring the Phosphoproteome Can Explain Treatment Resistance in Glioma. Cancer Cell, 2016, 29, 435-436.	16.8	9
59	Leveraging signaling research to understand and treat disease. Science Signaling, 2016, 9, eg4.	3.6	1
60	Protein Regulation in Signal Transduction. Cold Spring Harbor Perspectives in Biology, 2016, 8, a005918.	5.5	94
61	Neighborâ€directed histidine N (Ï")–alkylation: A route to imidazoliumâ€containing phosphopeptide macrocycles. Biopolymers, 2015, 104, 663-673.	2.4	14
62	Kinetics and Role of Plasma Matrix Metalloproteinase-9 Expression in Acute Lung Injury and the Acute Respiratory Distress Syndrome. Shock, 2015, 44, 128-136.	2.1	60
63	Tumor-Targeted Synergistic Blockade of MAPK and PI3K from a Layer-by-Layer Nanoparticle. Clinical Cancer Research, 2015, 21, 4410-4419.	7.0	55
64	A Multivariate Computational Method to Analyze High-Content RNAi Screening Data. Journal of Biomolecular Screening, 2015, 20, 985-997.	2.6	8
65	Reproducibility in science. Science Signaling, 2015, 8, eg5.	3.6	23
66	Criteria for biological reproducibility: What does " <i>n</i> ―mean?. Science Signaling, 2015, 8, fs7.	3.6	22
67	Synergistic Innate and Adaptive Immune Response to Combination Immunotherapy with Anti-Tumor Antigen Antibodies and Extended Serum Half-Life IL-2. Cancer Cell, 2015, 27, 489-501.	16.8	158
68	A Pleiotropic RNA-Binding Protein Controls Distinct Cell Cycle Checkpoints to Drive Resistance of p53 -Defective Tumors to Chemotherapy. Cancer Cell, 2015, 28, 623-637.	16.8	68
69	Pyruvate Kinase Isoform Expression Alters Nucleotide Synthesis to Impact Cell Proliferation. Molecular Cell, 2015, 57, 95-107.	9.7	209
70	A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways. Science Signaling, 2014, 7, ra44.	3.6	172
71	Phosphorylation of ETS1 by Src Family Kinases Prevents Its Recognition by the COP1 Tumor Suppressor. Cancer Cell, 2014, 26, 222-234.	16.8	71
72	Dihydropyrimidine Accumulation Is Required for the Epithelial-Mesenchymal Transition. Cell, 2014, 158, 1094-1109.	28.9	186

#	Article	IF	CITATIONS
73	Monoâ€anionic phosphopeptides produced by unexpected histidine alkylation exhibit high plk1 poloâ€box domainâ€binding affinities and enhanced antiproliferative effects in hela cells. Biopolymers, 2014, 102, 444-455.	2.4	24
74	mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin. Science, 2013, 341, 1236566.	12.6	383
75	A Reversible Gene-Targeting Strategy Identifies Synthetic Lethal Interactions between MK2 and p53 in the DNA Damage Response InÂVivo. Cell Reports, 2013, 5, 868-877.	6.4	85
76	Structure of the Toxoplasma gondii ROP18 Kinase Domain Reveals a Second Ligand Binding Pocket Required for Acute Virulence. Journal of Biological Chemistry, 2013, 288, 34968-34980.	3.4	18
77	The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature, 2013, 498, 246-250.	27.8	278
78	Protein kinases display minimal interpositional dependence on substrate sequence: potential implications for the evolution of signalling networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2574-2583.	4.0	11
79	Combined experimental and computational analysis of DNA damage signaling reveals contextâ€dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Molecular Systems Biology, 2012, 8, 568.	7.2	72
80	Identification of High Affinity Polo-like Kinase 1 (Plk1) Polo-box Domain Binding Peptides Using Oxime-Based Diversification. ACS Chemical Biology, 2012, 7, 805-810.	3.4	68
81	Peptoid–Peptide Hybrid Ligands Targeting the Polo Box Domain of Polo‣ike Kinase 1. ChemBioChem, 2012, 13, 1291-1296.	2.6	38
82	Chemical Genetic Screen for AMPKα2 Substrates Uncovers a Network of Proteins Involved in Mitosis. Molecular Cell, 2011, 44, 878-892.	9.7	232
83	Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nature Chemical Biology, 2011, 7, 595-601.	8.0	96
84	The Complex Art of Telling It Simply. Science Signaling, 2011, 4, .	3.6	0
85	Spatial Exclusivity Combined with Positive and Negative Selection of Phosphorylation Motifs Is the Basis for Context-Dependent Mitotic Signaling. Science Signaling, 2011, 4, ra42.	3.6	155
86	ls post-transcriptional stabilization, splicing and translation of selective mRNAs a key to the DNA damage response?. Cell Cycle, 2011, 10, 23-27.	2.6	36
87	Identification of a Suppressive Mechanism for Hedgehog Signaling through a Novel Interaction of Gli with 14-3-3. Journal of Biological Chemistry, 2010, 285, 4185-4194.	3.4	34
88	DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization. Molecular Cell, 2010, 40, 34-49.	9.7	210
89	Plk1 Self-Organization and Priming Phosphorylation of HsCYK-4 at the Spindle Midzone Regulate the Onset of Division in Human Cells. PLoS Biology, 2009, 7, e1000111.	5.6	170
90	Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Current Opinion in Cell Biology, 2009, 21, 245-255.	5.4	458

#	Article	IF	CITATIONS
91	Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nature Structural and Molecular Biology, 2009, 16, 876-882.	8.2	156
92	Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature, 2008, 455, 119-123.	27.8	596
93	Seeing the Signaling Forest and the Trees. Science Signaling, 2008, 1, .	3.6	1
94	Systematic Discovery of In Vivo Phosphorylation Networks. Cell, 2007, 129, 1415-1426.	28.9	702
95	14-3-3 if controls mitotic translation to facilitate cytokinesis. Nature, 2007, 446, 329-332.	27.8	217
96	p53-Deficient Cells Rely on ATM- and ATR-Mediated Checkpoint Signaling through the p38MAPK/MK2 Pathway for Survival after DNA Damage. Cancer Cell, 2007, 11, 175-189.	16.8	538
97	The NADPH oxidae and PI 3â€kinase: the role of p40phox. FASEB Journal, 2007, 21, A604.	0.5	0
98	"Bits" and Pieces. Science Signaling, 2006, 2006, pe28-pe28.	3.6	5
99	Prologue: An Overview of Protein Modular Domains As Adaptors. , 2005, , 1-4.		0
100	The SH2 Domain: A Prototype for Protein Interaction Modules. , 2005, , 5-36.		4
101	Structure, Specificity, and Mechanism of Protein Lysine Methylation by SET Domain Enzymes. , 2005, , 211-226.		0
102	The Structure and Function of the Bromodomain. , 2005, , 227-239.		1
103	Chromo and Chromo Shadow Domains. , 2005, , 241-255.		3
104	PDZ Domains: Intracellular Mediators of Carboxy-Terminal Protein Recognition and Scaffolding. , 2005, , 257-278.		1
105	EH Domains and Their Ligands. , 2005, , 279-290.		0
106	Ubiquitin Binding Modules: The Ubiquitin Network beyond the Proteasome. , 2005, , 291-319.		0
107	The Calponin Homology (CH) Domain. , 2005, , 321-336.		0

#	Article	IF	CITATIONS
109	ENTH and VHS Domains. , 2005, , 365-387.		Ο
110	PX Domains. , 2005, , 389-408.		2
111	SH3 Domains. , 2005, , 37-58.		7
112	Peptide and Protein Repertoires for Global Analysis of Modules. , 2005, , 409-438.		0
113	Computational Analysis of Modular Protein Architectures. , 2005, , 439-476.		2
114	Nomenclature for Protein Modules and Their Cognate Motifs. , 2005, , 477-486.		1
115	The WW Domain. , 2005, , 59-72.		7
116	EVH1/WH1 Domains. , 2005, , 73-101.		1
117	The GYF Domain. , 2005, , 103-116.		0
118	PTB Domains. , 2005, , 117-141.		0
119	The FHA Domain. , 2005, , 143-162.		0
120	The Eukaryotic Protein Kinase Domain. , 2005, , 181-209.		2
121	Epilogue: New Levels of Complexity in the Functional Roles of Modular Protein Interaction Domains: Switches and Sockets in the Circuit Diagrams of Cellular Systems Biology. , 2005, , 487-491.		Ο
122	MAPKAP Kinase-2 Is a Cell Cycle Checkpoint Kinase that Regulates the G2/M Transition and S Phase Progression in Response to UV Irradiation. Molecular Cell, 2005, 17, 37-48.	9.7	385
123	The Use of In Vitro Peptide-Library Screens in the Analysis of Phosphoserine/Threonine-Binding Domain Structure and Function. Annual Review of Biophysics and Biomolecular Structure, 2004, 33, 225-244.	18.3	78
124	The Molecular Basis for Phosphodependent Substrate Targeting and Regulation of Plks by the Polo-Box Domain. Cell, 2003, 115, 83-95.	28.9	687
125	Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Research, 2003, 31, 3635-3641.	14.5	1,455
126	Proteomic Screen Finds pSer/pThr-Binding Domain Localizing Plk1 to Mitotic Substrates. Science, 2003, 299, 1228-1231.	12.6	634

#	Article	IF	CITATIONS
127	Phosphotyrosine-binding domains in signal transduction. Nature Reviews Molecular Cell Biology, 2002, 3, 177-186.	37.0	328
128	A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nature Biotechnology, 2001, 19, 348-353.	17.5	509
129	The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biology, 2001, 3, 675-678.	10.3	567
130	Phosphoserine/threonine-binding domains. Current Opinion in Cell Biology, 2001, 13, 131-138.	5.4	331
131	MAP kinase pathways activated by stress: The p38 MAPK pathway. Critical Care Medicine, 2000, 28, N67-N77.	0.9	293
132	14-3-3 proteins in cancer. , 0, , 293-304.		0