Yossef Av-Gay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6963450/publications.pdf

Version: 2024-02-01

47006 54911 7,793 119 47 84 citations h-index g-index papers 125 125 125 7939 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA-Based Diagnostic Approaches for Identification of Burkholderia cepacia Complex, Burkholderia vietnamiensis, Burkholderia multivorans,Burkholderia stabilis, and Burkholderia cepacia Genomovars I and III. Journal of Clinical Microbiology, 2000, 38, 3165-3173.	3.9	446
2	Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 681-688.	3.3	396
3	The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends in Microbiology, 2000, 8, 238-244.	7.7	353
4	<i>Mycobacterium tuberculosis</i> protein tyrosine phosphatase (PtpA) excludes host vacuolar-H ⁺ â€"ATPase to inhibit phagosome acidification. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19371-19376.	7.1	331
5	Mycobacterium tuberculosis Virulence Is Mediated by PtpA Dephosphorylation of Human Vacuolar Protein Sorting 33B. Cell Host and Microbe, 2008, 3, 316-322.	11.0	281
6	Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 328-336.	3.3	254
7	The <i>Mycobacterium tuberculosis</i> protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth <i>in vivo</i> Molecular Microbiology, 2004, 52, 1691-1702.	2.5	228
8	Immunoevasion and immunosuppression of the macrophage by <i><scp>M</scp>ycobacterium tuberculosis</i> . Immunological Reviews, 2015, 264, 220-232.	6.0	223
9	Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics. Antimicrobial Agents and Chemotherapy, 2002, 46, 3348-3355.	3.2	175
10	A Novel Mycothiol-Dependent Detoxification Pathway in Mycobacteria Involving Mycothiol S-Conjugate Amidase. Biochemistry, 2000, 39, 10739-10746.	2.5	158
11	Mycothiol biosynthesis is essential for ethionamide susceptibility in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2008, 69, 1316-1329.	2.5	155
12	Synergistic Drug Combinations for Tuberculosis Therapy Identified by a Novel High-Throughput Screen. Antimicrobial Agents and Chemotherapy, 2011, 55, 3861-3869.	3.2	150
13	Nitazoxanide Stimulates Autophagy and Inhibits mTORC1 Signaling and Intracellular Proliferation of Mycobacterium tuberculosis. PLoS Pathogens, 2012, 8, e1002691.	4.7	124
14	Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis. Cell Reports, 2016, 14, 572-585.	6.4	124
15	Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1181-1192.	1.7	118
16	Evidence That Plant-Like Genes in Chlamydia Species Reflect an Ancestral Relationship between Chlamydiaceae, Cyanobacteria, and the Chloroplast. Genome Research, 2002, 12, 1159-1167.	5 . 5	114
17	Deletion of the <i>Mycobacterium tuberculosis pknH</i> Gene Confers a Higher Bacillary Load during the Chronic Phase of Infection in BALB/c Mice. Journal of Bacteriology, 2005, 187, 5751-5760.	2.2	113
18	Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 620-627.	2.3	113

#	Article	IF	Citations
19	The Mycobacterial Transcriptional Regulator whiB7 Gene Links Redox Homeostasis and Intrinsic Antibiotic Resistance. Journal of Biological Chemistry, 2012, 287, 299-310.	3.4	106
20	N-Acetyl-1-d-myo-Inosityl-2-Amino-2-Deoxy-α-d-Glucopyranoside Deacetylase (MshB) Is a Key Enzyme in Mycothiol Biosynthesis. Journal of Bacteriology, 2000, 182, 6958-6963.	2.2	105
21	Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development. Trends in Microbiology, 2013, 21, 100-109.	7.7	102
22	Expression and Characterization of the <i>Mycobacterium tuberculosis </i> Serine/Threonine Protein Kinase PknB. Infection and Immunity, 1999, 67, 5676-5682.	2.2	102
23	Mycobacterial manipulation of the host cell. FEMS Microbiology Reviews, 2005, 29, 1041-1050.	8.6	98
24	Characterization of Mycobacterium smegmatis Mutants Defective in 1-d-myo-Inosityl-2-amino-2-deoxy-α-d-glucopyranoside and Mycothiol Biosynthesis. Biochemical and Biophysical Research Communications, 1999, 255, 239-244.	2.1	96
25	Convergence of Ser/Thr and Two-component Signaling to Coordinate Expression of the Dormancy Regulon in Mycobacterium tuberculosis*. Journal of Biological Chemistry, 2010, 285, 29239-29246.	3.4	94
26	Gaseous nitric oxide bactericidal activity retained during intermittent high-dose short duration exposure. Nitric Oxide - Biology and Chemistry, 2009, 20, 16-23.	2.7	93
27	Mycothiol-dependent proteins in actinomycetes. FEMS Microbiology Reviews, 2007, 31, 278-292.	8.6	92
28	Mycobacterium tuberculosis Nucleoside Diphosphate Kinase Inactivates Small GTPases Leading to Evasion of Innate Immunity. PLoS Pathogens, 2013, 9, e1003499.	4.7	87
29	The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Molecular Microbiology, 2004, 51, 1003-1014.	2.5	85
30	Slow Release of Nitric Oxide from Charged Catheters and Its Effect on Biofilm Formation by <i>Escherichia coli</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 273-279.	3.2	82
31	<i>Mycobacterium bovis</i> BCG Attenuates Surface Expression of Mature Class II Molecules through IL-10-Dependent Inhibition of Cathepsin S. Journal of Immunology, 2005, 175, 5324-5332.	0.8	80
32	The Glycosyltransferase Gene Encoding the Enzyme Catalyzing the First Step of Mycothiol Biosynthesis (mshA). Journal of Bacteriology, 2003, 185, 3476-3479.	2.2	79
33	Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: Kinetics, molecular modeling, toxicity and effect on growth. Bioorganic and Medicinal Chemistry, 2010, 18, 3783-3789.	3.0	76
34	<i>Mycobacterium tuberculosis</i> PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochemical Journal, 2009, 420, 155-162.	3.7	73
35	The Crystal Structure of 1-D-myo-Inosityl 2-Acetamido-2-deoxy-α-D-glucopyranoside Deacetylase (MshB) from Mycobacterium tuberculosis Reveals a Zinc Hydrolase with a Lactate Dehydrogenase Fold. Journal of Biological Chemistry, 2003, 278, 47166-47170.	3.4	71
36	Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation. Journal of Cell Science, 2007, 120, 2796-2806.	2.0	71

#	Article	IF	CITATIONS
37	Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Biochemical and Biophysical Research Communications, 2006, 348, 6-12.	2.1	69
38	Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Research in Microbiology, 2002, 153, 233-241.	2.1	68
39	MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. Molecular Microbiology, 2010, 78, 989-1003.	2.5	65
40	Mycothiol-dependent mycobacterial response to oxidative stress. FEBS Letters, 2006, 580, 2712-2716.	2.8	63
41	Characterization ofMycobacterium tuberculosisMycothiolS-Conjugate Amidaseâ€. Biochemistry, 2003, 42, 12067-12076.	2.5	62
42	Inactivation of mshB, a key gene in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Microbiology (United Kingdom), 2003, 149, 1341-1349.	1.8	61
43	Microbial Protein-tyrosine Kinases. Journal of Biological Chemistry, 2014, 289, 9463-9472.	3.4	58
44	Development of an Intracellular Screen for New Compounds Able To Inhibit Mycobacterium tuberculosis Growth in Human Macrophages. Antimicrobial Agents and Chemotherapy, 2016, 60, 640-645.	3.2	57
45	Mycobacterium bovisBacillus Calmette-Guà ©rin Secreting Active Cathepsin S Stimulates Expression of Mature MHC Class II Molecules and Antigen Presentation in Human Macrophages. Journal of Immunology, 2007, 179, 5137-5145.	0.8	55
46	Targeted Mutagenesis of the Mycobacterium smegmatis mca Gene, Encoding a Mycothiol-Dependent Detoxification Protein. Journal of Bacteriology, 2004, 186, 6050-6058.	2.2	54
47	Phase separation and clustering of an ABC transporter in <i>Mycobacterium tuberculosis</i> Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16326-16331.	7.1	54
48	Thiol specific oxidative stress response in Mycobacteria. FEMS Microbiology Letters, 2005, 249, 87-94.	1.8	53
49	Mycobacterium tuberculosis Promotes Anti-apoptotic Activity of the Macrophage by PtpA Protein-dependent Dephosphorylation of Host GSK3α. Journal of Biological Chemistry, 2014, 289, 29376-29385.	3.4	53
50	Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Biochemical and Biophysical Research Communications, 2007, 363, 71-76.	2.1	52
51	Monitoring promoter activity and protein localization in Mycobacterium spp. using green fluorescent protein. Gene, 2001, 264, 225-231.	2.2	49
52	Purification and characterization of Mycobacterium tuberculosis 1d-myo-inosityl-2-acetamido-2-deoxy-1±-d-glucopyranoside deacetylase, MshB, a mycothiol biosynthetic enzyme. Protein Expression and Purification, 2006, 47, 542-550.	1.3	47
53	The serine/threonine protein kinase Pknl controls the growth of <i>Mycobacterium tuberculosis </i> tuberculosis i>upon infection. FEMS Microbiology Letters, 2009, 295, 23-29.	1.8	47
54	A phase I clinical study of inhaled nitric oxide in healthy adults. Journal of Cystic Fibrosis, 2012, 11, 324-331.	0.7	46

#	Article	IF	Citations
55	A protein kinase inhibitor as an antimycobacterial agent. FEMS Microbiology Letters, 2001, 205, 369-374.	1.8	45
56	Comparative Efficacy of Commercially Available and Emerging Antimicrobial Urinary Catheters Against Bacteriuria Caused by E. coli In Vitro. Urology, 2011, 78, 334-339.	1.0	45
57	Regulation of Ergothioneine Biosynthesis and Its Effect on Mycobacterium tuberculosis Growth and Infectivity. Journal of Biological Chemistry, 2015, 290, 23064-23076.	3.4	45
58	Innate Protection of <i>Mycobacterium smegmatis</i> against the Antimicrobial Activity of Nitric Oxide Is Provided by Mycothiol. Antimicrobial Agents and Chemotherapy, 2007, 51, 3364-3366.	3.2	44
59	Novel substrates of Mycobacterium tuberculosis PknH Ser/Thr kinase. Biochemical and Biophysical Research Communications, 2007, 355, 162-168.	2.1	44
60	Precise Null Deletion Mutations of the Mycothiol Synthesis Genes Reveal Their Role in Isoniazid and Ethionamide Resistance in Mycobacterium smegmatis. Antimicrobial Agents and Chemotherapy, 2011, 55, 3133-3139.	3.2	44
61	Gaseous nitric oxide reduces influenza infectivity in vitro. Nitric Oxide - Biology and Chemistry, 2013, 31, 48-53.	2.7	43
62	Screening of compounds toxicity against human Monocytic cell line-THP-1 by flow cytometry. Biological Procedures Online, 2004, 6, 220-225.	2.9	41
63	<i>Mycobacterium smegmatis</i> biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiology Letters, 2008, 278, 121-127.	1.8	41
64	Antimicrobial, anti-inflammatory, antiparasitic, and cytotoxic activities of Galium mexicanum. Journal of Ethnopharmacology, 2011, 137, 141-147.	4.1	40
65	Mycobacterium avium subsp. paratuberculosis PtpA Is an Endogenous Tyrosine Phosphatase Secreted during Infection. Infection and Immunity, 2006, 74, 6540-6546.	2.2	39
66	Kinome Analysis of Host Response to Mycobacterial Infection: a Novel Technique in Proteomics. Infection and Immunity, 2003, 71, 5514-5522.	2.2	34
67	Aminorifamycins and Sporalactams Produced in Culture by a Micromonospora sp. Isolated from a Northeastern-Pacific Marine Sediment Are Potent Antibiotics. Organic Letters, 2017, 19, 766-769.	4.6	34
68	Cholesterol is accumulated by mycobacteria but its degradation is limited to non-pathogenic fast-growing mycobacteria. Canadian Journal of Microbiology, 2000, 46, 826-831.	1.7	33
69	Signalling Inhibitors Against Mycobacterium tuberculosis – Early Days of a New Therapeutic Concept in Tuberculosis. Current Medicinal Chemistry, 2008, 15, 2760-2770.	2.4	33
70	Mycobacterium tuberculosis modulators of the macrophage's cellular events. Microbes and Infection, 2012, 14, 1211-1219.	1.9	32
71	Antimycobacterial activity of UDP-galactopyranose mutase inhibitors. International Journal of Antimicrobial Agents, 2010, 36, 364-368.	2.5	31
72	Coresistance to Isoniazid and Ethionamide Maps to Mycothiol Biosynthetic Genes in Mycobacterium bovis. Antimicrobial Agents and Chemotherapy, 2011, 55, 4422-4423.	3.2	31

#	Article	IF	CITATIONS
73	Sydowiols A–C: Mycobacterium tuberculosis protein tyrosine phosphatase inhibitors from an East China Sea marine-derived fungus, Aspergillus sydowii. Tetrahedron Letters, 2013, 54, 6081-6083.	1.4	31
74	Phosphorylation control of protein tyrosine phosphatase A activity in <i>Mycobacterium tuberculosis</i> . FEBS Letters, 2015, 589, 326-331.	2.8	30
75	Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Scientific Reports, 2018, 8, 155.	3.3	30
76	Glutathione disulfide and Sâ€nitrosoglutathione detoxification by <i>Mycobacteriumtuberculosis</i> thioredoxin system. FEBS Letters, 2009, 583, 3215-3220.	2.8	25
77	Screening of Preselected Libraries Targeting Mycobacterium abscessus for Drug Discovery. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	25
78	Components of Eukaryotic-like Protein Signaling Pathways in < i> Mycobacterium tuberculosis < /i> Microbial & Comparative Genomics, 1997, 2, 63-73.	0.4	24
79	Antimicrobial activities of sesquiterpene lactones and inositol derivatives from Hymenoxys robusta. Phytochemistry, 2011, 72, 2413-2418.	2.9	24
80	Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence. Microbiology Spectrum, 2017, 5, .	3.0	24
81	Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis. BMC Microbiology, 2010, 10, 50.	3.3	22
82	Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis. Microbiology (United Kingdom), 2013, 159, 726-736.	1.8	22
83	DMN-Tre Labeling for Detection and High-Content Screening of Compounds against Intracellular Mycobacteria. ACS Omega, 2020, 5, 3661-3669.	3.5	21
84	In vitro properties of antimicrobial bromotyrosine alkaloids. Journal of Medical Microbiology, 2006, 55, 407-415.	1.8	20
85	Antibacterial and Cytotoxic Activities of the Sesquiterpene Lactones Cnicin and Onopordopicrin. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	20
86	Molecular cloning and biochemical characterization of a serine threonine protein kinase, PknL, from Mycobacterium tuberculosis. Protein Expression and Purification, 2008, 58, 309-317.	1.3	19
87	Nitric oxide charged catheters as a potential strategy for prevention of hospital acquired infections. PLoS ONE, 2017, 12, e0174443.	2.5	19
88	High-Content Screening of Eukaryotic Kinase Inhibitors Identify CHK2 Inhibitor Activity Against Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 553962.	3.5	19
89	Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. Microbiology (United Kingdom), 2021, 167, .	1.8	17
90	Phosphorylation of Mycobacterium tuberculosis protein tyrosine kinase A PtkA by Ser/Thr protein kinases. Biochemical and Biophysical Research Communications, 2015, 467, 421-426.	2.1	16

#	Article	IF	Citations
91	THP-1 and <i>Dictyostelium</i> Infection Models for Screening and Characterization of Anti-Mycobacterium abscessus Hit Compounds. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	16
92	Development of a Liposome Formulation of Ethambutol. Antimicrobial Agents and Chemotherapy, 2004, 48, 1887-1888.	3.2	15
93	From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis. Microbiology (United Kingdom), 2021, 167, .	1.8	15
94	Antimicrobial activity, cytotoxicity and inflammatory response of novel plastics embedded with silver nanoparticles. Future Microbiology, 2013, 8, 403-411.	2.0	14
95	BCG immunomodulation: From the â€~hygiene hypothesis' to COVID-19. Immunobiology, 2021, 226, 152052.	1.9	14
96	Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. Microbiology Spectrum, 2015, 3, .	3.0	13
97	Nitric oxide inhalations in bronchiolitis: A pilot, randomized, doubleâ€blinded, controlled trial. Pediatric Pulmonology, 2018, 53, 95-102.	2.0	13
98	S-Nitrosylation of $\hat{l}\pm 1$ -Antitrypsin Triggers Macrophages Toward Inflammatory Phenotype and Enhances Intra-Cellular Bacteria Elimination. Frontiers in Immunology, 2019, 10, 590.	4.8	13
99	MymA Bioactivated Thioalkylbenzoxazole Prodrug Family Active against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2020, 63, 4732-4748.	6.4	12
100	System for Efficacy and Cytotoxicity Screening of Inhibitors Targeting Intracellular Mycobacterium tuberculosis .Journal of Visualized Experiments, 2017, , .	0.3	11
101	Efficient Synthesis of Benzothiazinone Analogues with Activity against Intracellular <i>Mycobacterium tuberculosis</i> . ChemMedChem, 2022, 17, e202100733.	3.2	11
102	Antimicrobial, Anti-Inflammatory, Antiparasitic, and Cytotoxic Activities of Laennecia confusa. Scientific World Journal, The, 2012, 2012, 1-8.	2.1	10
103	Biophysical Characterization of the Tandem FHA Domain Regulatory Module from the Mycobacterium tuberculosis ABC Transporter Rv1747. Structure, 2018, 26, 972-986.e6.	3.3	10
104	Chemical constituents, anti-inflammatory and antioxidant activities of bark extracts from <i>Prunus tucumanensis </i> Lillo. Natural Product Research, 2013, 27, 916-919.	1.8	9
105	Identification and characterization of a diamide sensitive mutant of Mycobacterium smegmatis. FEMS Microbiology Letters, 2003, 220, 161-169.	1.8	8
106	New Era of TB Drug Discovery and Its Impact on Disease Management. Current Treatment Options in Infectious Diseases, 2016, 8, 299-310.	1.9	8
107	Clionamines stimulate autophagy, inhibit Mycobacterium tuberculosis survival in macrophages, and target Pik1. Cell Chemical Biology, 2022, 29, 870-882.e11.	5.2	7
108	Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation. Journal of Cell Science, 2007, 120, 3489-3489.	2.0	6

#	Article	IF	CITATIONS
109	Screening of diverse marine invertebrate extracts identified Lissoclinotoxin F, Discodermin B, and other anti-Mycobacterium tuberculosis active compounds. Journal of Antibiotics, 2022, 75, 213-225.	2.0	4
110	Apoptosis assessment in high-content and high-throughput screening assays. BioTechniques, 2021, 70, 309-318.	1.8	3
111	Uncontrolled Release of Harmful Microorganisms. Science, 1999, 284, 1621b-1621.	12.6	3
112	Genome Sequences of the Mycobacterium tuberculosis H37Rv- ptkA Deletion Mutant and Its Parental Strain. Genome Announcements, 2017, 5, .	0.8	2
113	Synthesis, antimycobacterial activity and influence on mycobacterial InhA and PknB of 12-membered cyclodepsipeptides. Bioorganic and Medicinal Chemistry, 2018, 26, 3166-3190.	3.0	2
114	A protein kinase inhibitor as an antimycobacterial agent. FEMS Microbiology Letters, 2001, 205, 369-374.	1.8	2
115	Nitric Oxide Charged Catheters as a Potential Strategy for Prevention of Hospital Acquired Infections. Open Forum Infectious Diseases, 2016, 3, .	0.9	1
116	Epigenetic Phosphorylation Control of <i>Mycobacterium tuberculosis </i> Infection and Persistence., 0, , 557-580.		1
117	Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. , 2016, , 693-713.		О
118	Editorial: New Approaches Against Drug-Resistant M. tuberculosis. Frontiers in Microbiology, 2021, 12, 681420.	3.5	0
119	Hit Compounds and Associated Targets in Intracellular Mycobacterium tuberculosis. Molecules, 2022, 27, 4446.	3.8	0