
SAm Virtue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6962730/publications.pdf Version: 2024-02-01

SAM VIDTHE

#	Article	IF	CITATIONS
1	Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome — An allostatic perspective. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 338-349.	2.4	748
2	BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions. Cell, 2012, 149, 871-885.	28.9	481
3	PPAR gamma 2 Prevents Lipotoxicity by Controlling Adipose Tissue Expandability and Peripheral Lipid Metabolism. PLoS Genetics, 2007, 3, e64.	3.5	346
4	GDF15 mediates the effects of metformin on body weight and energy balance. Nature, 2020, 578, 444-448.	27.8	326
5	GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metabolism, 2019, 29, 707-718.e8.	16.2	286
6	It's Not How Fat You Are, It's What You Do with It That Counts. PLoS Biology, 2008, 6, e237.	5.6	244
7	Association of Lipidome Remodeling in the Adipocyte Membrane with Acquired Obesity in Humans. PLoS Biology, 2011, 9, e1000623.	5.6	213
8	The Human Lipodystrophy Gene <i>BSCL2/Seipin</i> May Be Essential for Normal Adipocyte Differentiation. Diabetes, 2008, 57, 2055-2060.	0.6	181
9	Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature, 2015, 525, 124-128.	27.8	174
10	The Link Between Nutritional Status and Insulin Sensitivity Is Dependent on the Adipocyte-Specific Peroxisome Proliferator-Activated Receptor-Â2 Isoform. Diabetes, 2005, 54, 1706-1716.	0.6	157
11	Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology, 2020, 158, 1899-1912.	1.3	157
12	Tamoxifen-Induced Anorexia Is Associated With Fatty Acid Synthase Inhibition in the Ventromedial Nucleus of the Hypothalamus and Accumulation of Malonyl-CoA. Diabetes, 2006, 55, 1327-1336.	0.6	143
13	Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology, 2017, 65, 1165-1180.	7.3	138
14	Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nature Communications, 2018, 9, 4974.	12.8	104
15	<i>Dact1</i> , a Nutritionally Regulated Preadipocyte Gene, Controls Adipogenesis by Coordinating the Wnt/β-Catenin Signaling Network. Diabetes, 2009, 58, 609-619.	0.6	84
16	GTTs and ITTs in mice: simple tests, complex answers. Nature Metabolism, 2021, 3, 883-886.	11.9	84
17	Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. Genome Biology, 2018, 19, 79.	8.8	83
18	The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death and Differentiation, 2009, 16, 782-789.	11.2	80

SAM VIRTUE

#	Article	IF	CITATIONS
19	Assessment of brown adipose tissue function. Frontiers in Physiology, 2013, 4, 128.	2.8	80
20	Metabolic phenotyping of a model of adipocyte differentiation. Physiological Genomics, 2009, 39, 109-119.	2.3	78
21	Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. International Journal of Obesity, 2010, 34, 1695-1705.	3.4	78
22	Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity. Diabetes, 2013, 62, 3697-3708.	0.6	76
23	Identification of a New Quorum-Sensing-Controlled Virulence Factor in Erwinia carotovora subsp. atroseptica Secreted via the Type II Targeting Pathway. Molecular Plant-Microbe Interactions, 2005, 18, 334-342.	2.6	73
24	Below Thermoneutrality, Changes in Activity Do Not Drive Changes in Total Daily Energy Expenditure between Groups of Mice. Cell Metabolism, 2012, 16, 665-671.	16.2	69
25	Obesity as a clinical and public health problem: Is there a need for a new definition based on lipotoxicity effects?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 400-404.	2.4	68
26	Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nature Communications, 2015, 6, 8951.	12.8	59
27	Decreased Brown Adipocyte Recruitment and Thermogenic Capacity in Mice with Impaired Peroxisome Proliferator-Activated Receptor (P465L PPARγ) Function. Endocrinology, 2006, 147, 5708-5714.	2.8	57
28	Obesity-associated gene <i>TMEM18</i> has a role in the central control of appetite and body weight regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9421-9426.	7.1	57
29	Brown Adipose Tissue Thermogenic Capacity Is Regulated by Elovl6. Cell Reports, 2015, 13, 2039-2047.	6.4	52
30	Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Scientific Reports, 2015, 5, 18366.	3.3	50
31	Genome-Wide Profiling of MicroRNAs in Adipose Mesenchymal Stem Cell Differentiation and Mouse Models of Obesity. PLoS ONE, 2011, 6, e21305.	2.5	49
32	A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization. Diabetes, 2012, 61, 3139-3147.	0.6	48
33	Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. ELife, 2019, 8, .	6.0	46
34	Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nature Metabolism, 2019, 1, 133-146.	11.9	42
35	Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans. International Journal of Obesity, 2015, 39, 1151-1160.	3.4	40
36	Peroxisome Proliferator-Activated Receptor γ2 Controls the Rate of Adipose Tissue Lipid Storage and Determines Metabolic Flexibility. Cell Reports, 2018, 24, 2005-2012.e7.	6.4	35

SAM VIRTUE

#	Article	IF	CITATIONS
37	Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nature Metabolism, 2020, 2, 514-531.	11.9	31
38	Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 506-511.	7.1	30
39	SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. Nature Metabolism, 2021, 3, 1150-1162.	11.9	29
40	Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nature Communications, 2019, 10, 1546.	12.8	27
41	Assessment of plasma acylcarnitines before and after weight loss in obese subjects. Archives of Biochemistry and Biophysics, 2016, 606, 73-80.	3.0	25
42	Orexin Expression is Regulated by ?-Melanocyte-Stimulating Hormone. Journal of Neuroendocrinology, 2007, 19, 703-707.	2.6	24
43	Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Molecular Metabolism, 2021, 48, 101210.	6.5	20
44	Lipocalin Prostaglandin D Synthase and PPARγ2 Coordinate to Regulate Carbohydrate and Lipid Metabolism In Vivo. PLoS ONE, 2012, 7, e39512.	2.5	19
45	Mild cold effects on hunger, food intake, satiety and skin temperature in humans. Endocrine Connections, 2016, 5, 65-73.	1.9	19
46	Surplus fat rapidly increases fat oxidation and insulin resistance in lipodystrophic mice. Molecular Metabolism, 2018, 13, 24-29.	6.5	17
47	Regulation of adipogenic differentiation and adipose tissue inflammation by interferon regulatory factor 3. Cell Death and Differentiation, 2021, 28, 3022-3035.	11.2	17
48	Brown adipose tissue in the treatment of obesity and diabetes: Are we hot enough?. Journal of Diabetes Investigation, 2011, 2, 341-350.	2.4	16
49	Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nature Metabolism, 2022, 4, 476-494.	11.9	16
50	Electrical and optical spectroscopy for quantitative screening of hepatic steatosis in donor livers. Physics in Medicine and Biology, 2010, 55, 6867-6879.	3.0	14
51	Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure. Molecular Metabolism, 2020, 40, 101020.	6.5	14
52	Nothing Iffy about HIF in the Hypothalamus. PLoS Biology, 2011, 9, e1001116.	5.6	12
53	Brown Adipose Tissue Volume and Fat Content Are Positively Associated With Whole-Body Adiposity in Young Men—Not in Women. Diabetes, 2021, 70, 1473-1485.	0.6	11
54	Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Molecular Metabolism, 2021, 48, 101220.	6.5	11

SAM VIRTUE

#	Article	IF	CITATIONS
55	Norepinephrine promotes triglyceride storage in macrophages via beta2â€adrenergic receptor activation. FASEB Journal, 2021, 35, e21266.	0.5	11
56	A pipeline for making 31P NMR accessible for small- and large-scale lipidomics studies. Analytical and Bioanalytical Chemistry, 2021, 413, 4763-4773.	3.7	10
57	Prediction of Weight Loss and Regain Following Dietary, Lifestyle, and Pharmacologic Intervention. Clinical Pharmacology and Therapeutics, 2012, 91, 1027-1034.	4.7	9
58	Autocrine IGF2 programmes β-cell plasticity under conditions of increased metabolic demand. Scientific Reports, 2021, 11, 7717.	3.3	8
59	LEM-PCR: a method for determining relative transcript isoform proportions using real-time PCR without a standard curve. Genome, 2010, 53, 637-642.	2.0	7
60	No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men. American Journal of Clinical Nutrition, 2017, 106, 1197-1205.	4.7	5
61	Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. Scientific Reports, 2021, 11, 17571.	3.3	5
62	What is the most appropriate covariate in ANCOVA when analysing metabolic rate?. Nature Metabolism, 2021, 3, 1585-1585.	11.9	5
63	Dietary PUFAs drive diverse system-level changes in lipid metabolism. Molecular Metabolism, 2022, 59, 101457.	6.5	3
64	PS6 - 3. Plasma acylcarnitine levels have limited predictive value for metabolic characteristics as insulin sensitivity and energy expenditure. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 150-151.	0.0	0