
Sheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961790/publications.pdf Version: 2024-02-01

SUENCLI

#	Article	IF	CITATIONS
1	epihet for intra-tumoral epigenetic heterogeneity analysis and visualization. Scientific Reports, 2021, 11, 376.	3.3	6
2	DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biology, 2021, 22, 295.	8.8	6
3	DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biology, 2021, 22, 295.	8.8	87
4	Molecular Biology and Evolution of Cancer: From Discovery to Action. Molecular Biology and Evolution, 2020, 37, 320-326.	8.9	43
5	CUP-AI-Dx: A tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence. EBioMedicine, 2020, 61, 103030.	6.1	67
6	ChIA-PIPE: A fully automated pipeline for comprehensive ChIA-PET data analysis and visualization. Science Advances, 2020, 6, eaay2078.	10.3	22
7	HBA-DEALS: accurate and simultaneous identification of differential expression and splicing using hierarchical Bayesian analysis. Genome Biology, 2020, 21, 171.	8.8	7
8	Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nature Immunology, 2020, 21, 1444-1455.	14.5	109
9	Somatic Mutations Drive Specific, but Reversible, Epigenetic Heterogeneity States in AML. Cancer Discovery, 2020, 10, 1934-1949.	9.4	23
10	CRISPR artificial splicing factors. Nature Communications, 2020, 11, 2973.	12.8	70
11	TET2 deficiency reprograms the germinal center B cell epigenome and silences genes linked to lymphomagenesis. Science Advances, 2020, 6, eaay5872.	10.3	29
12	Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data. Nature Communications, 2020, 11, 1173.	12.8	40
13	The serine hydroxymethyltransferase-2 (SHMT2) initiates lymphoma development through epigenetic tumor suppressor silencing. Nature Cancer, 2020, 1, 653-664.	13.2	35
14	Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell, 2020, 37, 584-598.e11.	16.8	96
15	Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nature Communications, 2019, 10, 4296.	12.8	41
16	TET2 Deficiency Causes Germinal Center Hyperplasia, Impairs Plasma Cell Differentiation, and Promotes B-cell Lymphomagenesis. Cancer Discovery, 2018, 8, 1632-1653.	9.4	120
17	Extracellular vesicles in DLBCL provide abundant clues to aberrant transcriptional programming and genomic alterations. Blood, 2018, 132, e13-e23.	1.4	23
18	Jak1 Integrates Cytokine Sensing to Regulate Hematopoietic Stem Cell Function and Stress Hematopoiesis. Cell Stem Cell, 2017, 21, 489-501.e7.	11.1	58

Sheng Li

#	Article	IF	CITATIONS
19	Genetic and epigenetic heterogeneity and the impact on cancer relapse. Experimental Hematology, 2017, 54, 26-30.	0.4	31
20	Clinical Genomics: Challenges and Opportunities. Critical Reviews in Eukaryotic Gene Expression, 2016, 26, 97-113.	0.9	12
21	A benchmark for RNA-seq quantification pipelines. Genome Biology, 2016, 17, 74.	8.8	160
22	Genetic and epigenetic heterogeneity in acute myeloid leukemia. Current Opinion in Genetics and Development, 2016, 36, 100-106.	3.3	130
23	Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nature Medicine, 2016, 22, 792-799.	30.7	322
24	JAK1 As a Convergent Regulator of Hematopoietic Stem Cell Function and Stress Hematopoiesis. Blood, 2016, 128, 722-722.	1.4	3
25	EPIG-09GENETIC AND EPIGENETIC TUMOR EVOLUTION IN GLIOMATOSIS CEREBRI. Neuro-Oncology, 2015, 17, v88.1-v88.	1.2	1
26	Divergent Dynamics of Epigenetic and Genetic Heterogeneity in Relapsed Acute Myeloid Leukemia. Blood, 2015, 126, 306-306.	1.4	2
27	Dynamic evolution of clonal epialleles revealed by methclone. Genome Biology, 2014, 15, 472.	8.8	67
28	Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nature Communications, 2014, 5, 5125.	12.8	122
29	Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nature Biotechnology, 2014, 32, 915-925.	17.5	217
30	Detecting and correcting systematic variation in large-scale RNA sequencing data. Nature Biotechnology, 2014, 32, 888-895.	17.5	174
31	The Pivotal Regulatory Landscape of RNA Modifications. Annual Review of Genomics and Human Genetics, 2014, 15, 127-150.	6.2	284
32	An optimized algorithm for detecting and annotating regional differential methylation. BMC Bioinformatics, 2013, 14, S10.	2.6	105
33	Epigenetic Deregulation In Relapsed Acute Myeloid Leukemia. Blood, 2013, 122, 2499-2499.	1.4	1
34	methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biology, 2012, 13, R87.	9.6	1,541
35	Relapse-specific mutations in cytosolic 5'-nucleotidase II in childhood acute lymphoblastic leukemia Journal of Clinical Oncology, 2012, 30, 9507-9507.	1.6	0