List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961286/publications.pdf Version: 2024-02-01

Кони Морисні

#	Article	IF	CITATIONS
1	Establishment of monoclonal antibodies broadly neutralize infection of hepatitis B virus. Microbiology and Immunology, 2022, , .	1.4	2
2	Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening. Antiviral Research, 2022, 199, 105268.	4.1	15
3	SARS-CoV-2 ORF6 disrupts nucleocytoplasmic trafficking to advance viral replication. Communications Biology, 2022, 5, 483.	4.4	35
4	Novel Neplanocin A Derivatives as Selective Inhibitors of Hepatitis B Virus with a Unique Mechanism of Action. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	2
5	Identification of Two Critical Neutralizing Epitopes in the Receptor Binding Domain of Hepatitis B Virus preS1. Journal of Virology, 2021, 95, .	3.4	8
6	Deep sequencing analysis of serum hepatitis B virusâ€RNA during nucleot(s)ide analogue therapy. Hepatology Research, 2021, 51, 39-50.	3.4	4
7	Induction of HOX Genes by Hepatitis C Virus Infection via Impairment of Histone H2A Monoubiquitination. Journal of Virology, 2021, 95, .	3.4	8
8	Hepatitis C virus modulates signal peptide peptidase to alter host protein processing. Proceedings of the United States of America, 2021, 118, .	7.1	6
9	DsRNA Sequencing for RNA Virus Surveillance Using Human Clinical Samples. Viruses, 2021, 13, 1310.	3.3	6
10	Amino Acid Polymorphism in Hepatitis B Virus Associated With Functional Cure. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1583-1598.	4.5	3
11	Inhibitory effect of a novel thiazolidinedione derivative on hepatitis B virus entry. Antiviral Research, 2021, 194, 105165.	4.1	6
12	Nâ€Terminal PreS1 Sequence Regulates Efficient Infection of Cellâ€Culture–Generated Hepatitis B Virus. Hepatology, 2021, 73, 520-532.	7.3	17
13	Establishment of a Cell Culture Model Permissive for Infection by Hepatitis B and C Viruses. Hepatology Communications, 2021, 5, 634-649.	4.3	13
14	Antiâ€viral effects of interferonâ€ĥ»3 on hepatitis B virus infection in cell culture. Hepatology Research, 2020, 50, 283-291.	3.4	8
15	Establishment of a novel hepatitis B virus culture system using immortalized human hepatocytes. Scientific Reports, 2020, 10, 21718.	3.3	9
16	Cancerâ€related genetic changes in multistep hepatocarcinogenesis and their correlation with imaging and histological findings. Hepatology Research, 2020, 50, 1071-1082.	3.4	2
17	Potential Risk of Virus Carryover by Fabrics of Personal Protective Gowns. Frontiers in Public Health, 2019, 7, 121.	2.7	17
18	C-terminal α Domain of p63 Binds to p300 to Coactivate β-Catenin. Neoplasia, 2019, 21, 494-503.	5.3	7

#	Article	IF	CITATIONS
19	HBV preS deletion mapping using deep sequencing demonstrates a unique association with viral markers. PLoS ONE, 2019, 14, e0212559.	2.5	7
20	USP15 Participates in Hepatitis C Virus Propagation through Regulation of Viral RNA Translation and Lipid Droplet Formation. Journal of Virology, 2019, 93, .	3.4	17
21	Hepatitis B virus (HBV)â€infected patients with low hepatitis B surface antigen and high hepatitis B coreâ€related antigen titers have a high risk of HBVâ€related hepatocellular carcinoma. Hepatology Research, 2019, 49, 51-63.	3.4	40
22	Roles of the 5′ Untranslated Region of Nonprimate Hepacivirus in Translation Initiation and Viral Replication. Journal of Virology, 2018, 92, .	3.4	8
23	Seroepidemiology of non-primate hepacivirus (NPHV) in Japanese native horses. Journal of Veterinary Medical Science, 2018, 80, 186-189.	0.9	3
24	Immunological function of Langerhans cells in HIV infection. Journal of Dermatological Science, 2017, 87, 159-167.	1.9	13
25	The potential of signal peptide peptidase as a therapeutic target for hepatitis C. Expert Opinion on Therapeutic Targets, 2017, 21, 827-836.	3.4	7
26	Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress. Antiviral Research, 2017, 145, 123-130.	4.1	24
27	Inhibitory effects of metachromin A on hepatitis B virus production via impairment of the viral promoter activity. Antiviral Research, 2017, 145, 136-145.	4.1	12
28	Characterization of SPP inhibitors suppressing propagation of HCV and protozoa. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10782-E10791.	7.1	8
29	Four Aromatic Sulfates with an Inhibitory Effect against HCV NS3 Helicase from the Crinoid Alloeocomatella polycladia. Marine Drugs, 2017, 15, 117.	4.6	6
30	Insights into the mechanism of isoenzyme-specific signal peptide peptidase-mediated translocation of heme oxygenase. PLoS ONE, 2017, 12, e0188344.	2.5	10
31	Hepatitis B virus prevents excessive viral production via reduction of cell death-inducing DFF45-like effectors. Journal of General Virology, 2017, 98, 1762-1773.	2.9	10
32	Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity. Microbiology and Immunology, 2016, 60, 740-753.	1.4	7
33	Inhibitory effect of CDK9 inhibitor FIT-039 on hepatitis B virus propagation. Antiviral Research, 2016, 133, 156-164.	4.1	25
34	TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis. Nature Communications, 2016, 7, 11379.	12.8	45
35	Structural Proteins of HCV and Biological Functions. , 2016, , 105-127.		1
36	Hepatocyte Factor JMJD5 Regulates Hepatitis B Virus Replication through Interaction with HBx. Journal of Virology, 2016, 90, 3530-3542.	3.4	27

#	Article	lF	CITATIONS
37	Repression of Wnt/β-catenin response elements by p63 (TP63). Cell Cycle, 2016, 15, 699-710.	2.6	17
38	The Alarmin IL-33 Derived from HSV-2-Infected Keratinocytes Triggers MastÂCell-Mediated Antiviral Innate Immunity. Journal of Investigative Dermatology, 2016, 136, 1290-1292.	0.7	15
39	Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide. Scientific Reports, 2015, 5, 17047.	3.3	42
40	Involvement of FKBP6 in hepatitis C virus replication. Scientific Reports, 2015, 5, 16699.	3.3	14
41	Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase. International Journal of Molecular Sciences, 2015, 16, 18439-18453.	4.1	22
42	Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay. Marine Drugs, 2015, 13, 6759-6773.	4.6	17
43	Long-term imipramine treatment increases N-methyl-d-aspartate receptor activity and expression via epigenetic mechanisms. European Journal of Pharmacology, 2015, 752, 69-77.	3.5	24
44	Novel sex-dependent differentially methylated regions are demethylated in adult male mouse livers. Biochemical and Biophysical Research Communications, 2015, 462, 332-338.	2.1	13
45	Deep Sequencing and Phylogenetic Analysis of Variants Resistant to Interferon-Based Protease Inhibitor Therapy in Chronic Hepatitis Induced by Genotype 1b Hepatitis C Virus. Journal of Virology, 2015, 89, 6105-6116.	3.4	32
46	Maternal restraint stress during pregnancy in mice induces 11β-HSD1-associated metabolic changes in the livers of the offspring. Journal of Developmental Origins of Health and Disease, 2015, 6, 105-114.	1.4	12
47	Abstract 812: Processing of core protein by signal peptide peptidase participates in propagation and pathogenesis of hepatitis C virus. , 2015, , .		0
48	PBDE: Structure-Activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase. Molecules, 2014, 19, 4006-4020.	3.8	7
49	Identification and Biochemical Characterization of Halisulfate 3 and Suvanine as Novel Inhibitors of Hepatitis C Virus NS3 Helicase from a Marine Sponge. Marine Drugs, 2014, 12, 462-476.	4.6	14
50	EFdA, a Reverse Transcriptase Inhibitor, Potently Blocks HIV-1 Ex Vivo Infection of Langerhans Cells within Epithelium. Journal of Investigative Dermatology, 2014, 134, 1158-1161.	0.7	4
51	Hallmarks of Hepatitis C Virus in Equine Hepacivirus. Journal of Virology, 2014, 88, 13352-13366.	3.4	57
52	Cholesterol sulfate as a potential inhibitor of hepatitis C virus NS3 helicase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 223-229.	5.2	14
53	Binding of HSV-1 Glycoprotein K (gK) to Signal Peptide Peptidase (SPP) Is Required for Virus Infectivity. PLoS ONE, 2014, 9, e85360.	2.5	30
54	Microglia release ATP by exocytosis. Glia, 2013, 61, 1320-1330.	4.9	150

#	Article	IF	CITATIONS
55	Antimicrobial Peptide LL-37 Produced by HSV-2-Infected Keratinocytes Enhances HIV Infection of Langerhans Cells. Cell Host and Microbe, 2013, 13, 77-86.	11.0	56
56	Psammaplin A inhibits hepatitis C virus NS3 helicase. Journal of Natural Medicines, 2013, 67, 765-772.	2.3	17
57	<scp>IL</scp> â€28B (<scp>IFN</scp> â€Î»3) and <scp>IFN</scp> â€Î± synergistically inhibit <scp>HCV</scp> replication. Journal of Viral Hepatitis, 2013, 20, 281-289.	2.0	26
58	Effects of immunization of pregnant guinea pigs with guinea pig cytomegalovirus glycoprotein B on viral spread in the placenta. Vaccine, 2013, 31, 3199-3205.	3.8	31
59	Ca ²⁺ /S100 proteins regulate <scp>HCV</scp> virus <scp>NS</scp> 5A– <scp>FKBP</scp> 8/ <scp>FKBP</scp> 38 interaction and <scp>HCV</scp> virus <scp>RNA</scp> replication. Liver International, 2013, 33, 1008-1018.	3.9	28
60	Understanding the Biological Context of NS5A–Host Interactions in HCV Infection: A Network-Based Approach. Journal of Proteome Research, 2013, 12, 2537-2551.	3.7	33
61	Oral Administration of the CCR5 Inhibitor, Maraviroc, Blocks HIV Ex Vivo Infection of Langerhans Cells within the Epithelium. Journal of Investigative Dermatology, 2013, 133, 2803-2805.	0.7	7
62	Serum <scp>RANTES</scp> level influences the response to pegylated interferon and ribavirin therapy in chronic hepatitis <scp>C</scp> . Hepatology Research, 2013, 43, 865-875.	3.4	1
63	Deep-Sequencing Analysis of the Association between the Quasispecies Nature of the Hepatitis C Virus Core Region and Disease Progression. Journal of Virology, 2013, 87, 12541-12551.	3.4	34
64	Mast Cells Play a Key Role in Host Defense against Herpes Simplex Virus Infection through TNF-α and IL-6 Production. Journal of Investigative Dermatology, 2013, 133, 2170-2179.	0.7	78
65	Inhibitory Effects of Caffeic Acid Phenethyl Ester Derivatives on Replication of Hepatitis C Virus. PLoS ONE, 2013, 8, e82299.	2.5	31
66	CD44 Participates in IP-10 Induction in Cells in Which Hepatitis C Virus RNA Is Replicating, through an Interaction with Toll-Like Receptor 2 and Hyaluronan. Journal of Virology, 2012, 86, 6159-6170.	3.4	33
67	Baculovirus GP64-Mediated Entry into Mammalian Cells. Journal of Virology, 2012, 86, 2610-2620.	3.4	65
68	Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia. Marine Drugs, 2012, 10, 744-761.	4.6	15
69	Proteomic Analysis of Hepatitis C Virus (HCV) Core Protein Transfection and Host Regulator PA28Î ³ Knockout in HCV Pathogenesis: A Network-Based Study. Journal of Proteome Research, 2012, 11, 3664-3679.	3.7	13
70	Exploitation of Lipid Components by Viral and Host Proteins for Hepatitis C Virus Infection. Frontiers in Microbiology, 2012, 3, 54.	3.5	31
71	Upregulation of nuclear PA28Î ³ expression in cirrhosis and hepatocellular carcinoma. Experimental and Therapeutic Medicine, 2012, 3, 379-385.	1.8	10
72	Inhibition of Hepatitis C Virus NS3 Helicase by Manoalide. Journal of Natural Products, 2012, 75, 650-654.	3.0	32

#	Article	IF	CITATIONS
73	Inhibition of Both Protease and Helicase Activities of Hepatitis C Virus NS3 by an Ethyl Acetate Extract of Marine Sponge Amphimedon sp. PLoS ONE, 2012, 7, e48685.	2.5	7
74	Activation of the Long Terminal Repeat of Human Endogenous Retrovirus K by Melanoma-Specific Transcription Factor MITF-M. Neoplasia, 2011, 13, 1081-IN42.	5.3	43
75	Involvement of cyclophilin B in the replication of Japanese encephalitis virus. Virology, 2011, 412, 211-219.	2.4	38
76	Heterogeneous Nuclear Ribonucleoprotein A2 Participates in the Replication of Japanese Encephalitis Virus through an Interaction with Viral Proteins and RNA. Journal of Virology, 2011, 85, 10976-10988.	3.4	65
77	Dysfunction of Autophagy Participates in Vacuole Formation and Cell Death in Cells Replicating Hepatitis C Virus. Journal of Virology, 2011, 85, 13185-13194.	3.4	71
78	Elimination of Hepatitis C Virus from Hepatocytes by a Selective Activation of Therapeutic Molecules. PLoS ONE, 2011, 6, e15967.	2.5	6
79	Involvement of PA28 \hat{I}^3 in the propagation of hepatitis C virus. Hepatology, 2010, 52, 411-420.	7.3	42
80	Establishment of an indicator cell system for hepatitis C virus. Microbiology and Immunology, 2010, 54, 206-220.	1.4	8
81	Acquisition of Complement Resistance through Incorporation of CD55/Decay-Accelerating Factor into Viral Particles Bearing Baculovirus GP64. Journal of Virology, 2010, 84, 3210-3219.	3.4	61
82	Peripheral B Cells May Serve as a Reservoir for Persistent Hepatitis C Virus Infection. Journal of Innate Immunity, 2010, 2, 607-617.	3.8	37
83	Involvement of Ceramide in the Propagation of Japanese Encephalitis Virus. Journal of Virology, 2010, 84, 2798-2807.	3.4	107
84	Network based analysis of hepatitis C virus Core and NS4B protein interactions. Molecular BioSystems, 2010, 6, 2539.	2.9	44
85	Proteasomal Turnover of Hepatitis C Virus Core Protein Is Regulated by Two Distinct Mechanisms: a Ubiquitin-Dependent Mechanism and a Ubiquitin-Independent but PA28γ-Dependent Mechanism. Journal of Virology, 2009, 83, 2389-2392.	3.4	57
86	Baculovirus Induces Type I Interferon Production through Toll-Like Receptor-Dependent and -Independent Pathways in a Cell-Type-Specific Manner. Journal of Virology, 2009, 83, 7629-7640.	3.4	79
87	Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12986-12991.	7.1	214
88	Human VAP-C Negatively Regulates Hepatitis C Virus Propagation. Journal of Virology, 2009, 83, 7959-7969.	3.4	26
89	Cochaperone Activity of Human Butyrate-Induced Transcript 1 Facilitates Hepatitis C Virus Replication through an Hsp90-Dependent Pathway. Journal of Virology, 2009, 83, 10427-10436.	3.4	39
90	Tacrolimus Ameliorates Metabolic Disturbance and Oxidative Stress Caused by Hepatitis C Virus Core Protein. American Journal of Pathology, 2009, 175, 1515-1524.	3.8	9

#	Article	IF	CITATIONS
91	Crystal structure of the catalytic domain of Japanese encephalitis virus NS3 helicase/nucleoside triphosphatase at a resolution of 1.8ÂÃ Virology, 2008, 373, 426-436.	2.4	66
92	Hepatitis C virus core protein: Its coordinate roles with PA28Î ³ in metabolic abnormality and carcinogenicity in the liver. International Journal of Biochemistry and Cell Biology, 2008, 40, 1437-1442.	2.8	28
93	A Single-Amino-Acid Mutation in Hepatitis C Virus NS5A Disrupting FKBP8 Interaction Impairs Viral Replication. Journal of Virology, 2008, 82, 3480-3489.	3.4	59
94	Baculovirus vector for gene delivery and vaccine development. Future Virology, 2008, 3, 35-43.	1.8	24
95	Intramembrane Processing by Signal Peptide Peptidase Regulates the Membrane Localization of Hepatitis C Virus Core Protein and Viral Propagation. Journal of Virology, 2008, 82, 8349-8361.	3.4	97
96	Human Butyrate-Induced Transcript 1 Interacts with Hepatitis C Virus NS5A and Regulates Viral Replication. Journal of Virology, 2008, 82, 2631-2641.	3.4	46
97	Virus-Cell Interaction of HCV. , 2008, , 125-150.		1
98	Critical role of PA28γ in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1661-1666.	7.1	192
99	E6AP Ubiquitin Ligase Mediates Ubiquitylation and Degradation of Hepatitis C Virus Core Protein. Journal of Virology, 2007, 81, 1174-1185.	3.4	108
100	Involvement of the PA28γ-Dependent Pathway in Insulin Resistance Induced by Hepatitis C Virus Core Protein. Journal of Virology, 2007, 81, 1727-1735.	3.4	121
101	Processing of Capsid Protein by Cathepsin L Plays a Crucial Role in Replication of Japanese Encephalitis Virus in Neural and Macrophage Cells. Journal of Virology, 2007, 81, 8477-8487.	3.4	28
102	Hepatitis C Virus Nonstructural Protein 5A Modulates the Toll-Like Receptor-MyD88-Dependent Signaling Pathway in Macrophage Cell Lines. Journal of Virology, 2007, 81, 8953-8966.	3.4	151
103	Replication-Competent Recombinant Vesicular Stomatitis Virus Encoding Hepatitis C Virus Envelope Proteins. Journal of Virology, 2007, 81, 8601-8612.	3.4	77
104	Host factors involved in the replication of hepatitis C virus. Reviews in Medical Virology, 2007, 17, 343-354.	8.3	36
105	Evaluation systems for anti-HCV drugs. Advanced Drug Delivery Reviews, 2007, 59, 1213-1221.	13.7	14
106	Characterization of HCV-like particles produced in a human hepatoma cell line by a recombinant baculovirus. Biochemical and Biophysical Research Communications, 2006, 340, 200-208.	2.1	36
107	Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO Journal, 2006, 25, 5015-5025.	7.8	230
108	Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO Journal, 2006, 25, 5634-5634.	7.8	1

#	Article	IF	CITATIONS
109	Oligomerization of Hepatitis C Virus Core Protein Is Crucial for Interaction with the Cytoplasmic Domain of E1 Envelope Protein. Journal of Virology, 2006, 80, 11265-11273.	3.4	48
110	Nucleolar Protein B23 Interacts with Japanese Encephalitis Virus Core Protein and Participates in Viral Replication. Microbiology and Immunology, 2006, 50, 225-234.	1.4	68
111	Nuclear Localization of Japanese Encephalitis Virus Core Protein Enhances Viral Replication. Journal of Virology, 2005, 79, 3448-3458.	3.4	125
112	Human VAP-B Is Involved in Hepatitis C Virus Replication through Interaction with NS5A and NS5B. Journal of Virology, 2005, 79, 13473-13482.	3.4	181
113	Involvement of the Toll-Like Receptor 9 Signaling Pathway in the Induction of Innate Immunity by Baculovirus. Journal of Virology, 2005, 79, 2847-2858.	3.4	209
114	Molecular Determinants for Subcellular Localization of Hepatitis C Virus Core Protein. Journal of Virology, 2005, 79, 1271-1281.	3.4	127
115	Ligand-Directed Gene Targeting to Mammalian Cells by Pseudotype Baculoviruses. Journal of Virology, 2005, 79, 3639-3652.	3.4	76
116	Intramembrane Proteolysis and Endoplasmic Reticulum Retention of Hepatitis C Virus Core Protein. Journal of Virology, 2004, 78, 6370-6380.	3.4	93
117	In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses. Journal of Virology, 2003, 77, 9799-9808.	3.4	169
118	Mechanisms of Hepatitis C Virus Infection. Antiviral Chemistry and Chemotherapy, 2003, 14, 285-297.	0.6	44
119	Proteasome Activator PA28γ-Dependent Nuclear Retention and Degradation of Hepatitis C Virus Core Protein. Journal of Virology, 2003, 77, 10237-10249.	3.4	143
120	Induction of Bad-Mediated Apoptosis by Sindbis Virus Infection: Involvement of Pro-survival Members of the Bcl-2 Family. Virology, 2002, 292, 258-271.	2.4	33
121	Characterization of Pseudotype VSV Possessing HCV Envelope Proteins. Virology, 2001, 286, 263-275.	2.4	138
122	Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death and Differentiation, 2001, 8, 486-494.	11.2	94
123	Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9683-9688.	7.1	142
124	Neuronal and glial differentiation of neuroblastoma and glioma cells by Rho inhibitory bacterial exo-enzyme C3. Neuropathology, 1999, 19, 288-293.	1.2	1
125	Inhibition of Listeriolysin O-Induced Hemolysis by Bovine Lactoferrin Biological and Pharmaceutical Bulletin, 1999, 22, 1167-1172.	1.4	7
126	Tyrosine phosphorylation as a convergent pathway of heterotrimeric G protein- and rho protein-mediated Ca2+ sensitization of smooth muscle of rabbit mesenteric artery. British Journal of Pharmacology, 1998, 125, 1651-1660.	5.4	24

#	Article	IF	CITATIONS
127	Sequence Analysis of the <i>actA</i> Gene of <i>Listeria monocytogenes</i> Isolated from Human. Microbiology and Immunology, 1998, 42, 129-132.	1.4	15
128	Characterization of Component-I Gene of Botulinum C2 Toxin and PCR Detection of Its Gene in Clostridial Species. Biochemical and Biophysical Research Communications, 1996, 220, 353-359.	2.1	40
129	Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1307, 123-126.	2.4	91
130	Expression of listeriolysin O by intracellularListeria monocytogenesfollowing infection of lipopolysaccharide-treated or untreated J774.1 macrophage-like cells. FEMS Immunology and Medical Microbiology, 1996, 16, 213-222.	2.7	3
131	Expression of listeriolysin O by intracellular Listeria monocytogenes following infection of lipopolysaccharide-treated or untreated J774.1 macrophage-like cells. FEMS Immunology and Medical Microbiology, 1996, 16, 213-222.	2.7	0
132	Identification of Gangliosides as Inhibitors of ADP-ribosyltransferases of Pertussis Toxin and Exoenzyme C3 from Clostridium botulinum. Journal of Biological Chemistry, 1995, 270, 8115-8121.	3.4	12
133	Type A and B Neurotoxin Genes in a Clostridium botulinum Type AB Strain. Biochemical and Biophysical Research Communications, 1995, 213, 737-745.	2.1	18
134	Involvement ofrhoin GTPÎ ³ S-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Letters, 1995, 367, 246-250.	2.8	172
135	Cloning and Whole Nucleotide Sequence of the Gene for the Light Chain Component of Botulinum Type E Toxin from <i>Clostridium butyricum</i> Strain BL6340 and <i>Clostridium botulinum</i> Type E Strain Mashike. Microbiology and Immunology, 1992, 36, 213-220.	1.4	11
136	Inhibition of norepinephrine secretion from digitonin permeabilized PC12 cells by botulinum type D toxin. Toxicon, 1992, 30, 1555-1562.	1.6	0
137	Low-Molecular-Weight GTP-Binding Proteins Serving as ADP-Ribosylation Substrate for ADP-Ribosyltransferase from Clostridium botulinum and Their Relation to Phosphoinositides Matabolism in Thymocytes Lowrnal of Biochemistry, 1990, 108, 879, 885	1.7	3