
Timothy M Vogel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6961222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial Competition for the Anode Colonization under Different External Resistances in Microbial Fuel Cells. Catalysts, 2022, 12, 176.	3.5	12
2	Sequencing Depth Has a Stronger Effect than DNA Extraction on Soil Bacterial Richness Discovery. Biomolecules, 2022, 12, 364.	4.0	3
3	Effect of Contact Area and Shape of Anode Current Collectors on Bacterial Community Structure in Microbial Fuel Cells. Molecules, 2022, 27, 2245.	3.8	6
4	Gentamicin at sub-inhibitory concentrations selects for antibiotic resistance in the environment. ISME Communications, 2022, 2, .	4.2	11
5	Gentamicin Adsorption onto Soil Particles Prevents Overall Short-Term Effects on the Soil Microbiome and Resistome. Antibiotics, 2021, 10, 191.	3.7	3
6	Functional trait relationships demonstrate life strategies in terrestrial prokaryotes. FEMS Microbiology Ecology, 2021, 97, .	2.7	12
7	Aminoglycosides analysis optimization using ion pairing liquid chromatography coupled to tandem mass spectrometry and application on wastewater samples. Journal of Chromatography A, 2021, 1651, 462133.	3.7	19
8	Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds. MicrobiologyOpen, 2020, 9, e1100.	3.0	8
9	Microbial Ecology of the Planetary Boundary Layer. Atmosphere, 2020, 11, 1296.	2.3	4
10	Over Winter Microbial Processes in a Svalbard Snow Pack: An Experimental Approach. Frontiers in Microbiology, 2020, 11, 1029.	3.5	4
11	Seasonal shift in airborne microbial communities. Science of the Total Environment, 2020, 716, 137129.	8.0	48
12	Spatial analysis of bacteria in brackish lake sediment. International Journal of Sediment Research, 2020, 35, 227-236.	3.5	9
13	Microbial functional signature in the atmospheric boundary layer. Biogeosciences, 2020, 17, 6081-6095.	3.3	12
14	Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. Aerobiologia, 2019, 35, 671-701.	1.7	41
15	Global airborne microbial communities controlled by surrounding landscapes and wind conditions. Scientific Reports, 2019, 9, 14441.	3.3	56
16	Community structure and functional genes in radionuclide contaminated soils in Chernobyl and Fukushima. FEMS Microbiology Letters, 2019, 366, .	1.8	26
17	Beyond the planetary boundary layer: Bacterial and fungal vertical biogeography at Mount Sonnblick, Austria. Geo: Geography and Environment, 2019, 6, e00069.	0.8	10
18	Methods to Investigate the Global Atmospheric Microbiome. Frontiers in Microbiology, 2019, 10, 243.	3.5	50

2

#	Article	IF	CITATIONS
19	Sources and selection of snow-specific microbial communities in a Greenlandic sea ice snow cover. Scientific Reports, 2019, 9, 2290.	3.3	42
20	Do Organic Substrates Drive Microbial Community Interactions in Arctic Snow?. Frontiers in Microbiology, 2019, 10, 2492.	3.5	21
21	Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater. Journal of Hazardous Materials, 2017, 326, 229-236.	12.4	57
22	Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH. Genome Biology and Evolution, 2017, 9, 2477-2490.	2.5	32
23	Microbial fuel cell anodic microbial population dynamics during MFC start-up. Biosensors and Bioelectronics, 2017, 92, 357-363.	10.1	98
24	A Modified Approach for in Situ Chemical Oxidation Coupled to Biodegradation Enhances Light Nonaqueous Phase Liquid Source-Zone Remediation. Environmental Science & Technology, 2017, 51, 463-472.	10.0	14
25	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73.	3.5	120
26	Hydrocarbon biostimulation and bioaugmentation in organic carbon and clay-rich soils. Soil Biology and Biochemistry, 2016, 99, 66-74.	8.8	36
27	Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater. Journal of Contaminant Hydrology, 2016, 193, 48-53.	3.3	10
28	Microbial ecology of chlorinated solvent biodegradation. Environmental Microbiology, 2015, 17, 4835-4850.	3.8	21
29	Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Frontiers in Microbiology, 2015, 6, 358.	3.5	88
30	Functional Basis of Microorganism Classification. PLoS Computational Biology, 2015, 11, e1004472.	3.2	37
31	Linking environmental prokaryotic viruses and their host through CRISPRs. FEMS Microbiology Ecology, 2015, 91, .	2.7	23
32	Snow and ice ecosystems: not so extreme. Research in Microbiology, 2015, 166, 782-795.	2.1	64
33	Potential drivers of microbial community structure and function in Arctic spring snow. Frontiers in Microbiology, 2014, 5, 413.	3.5	58
34	The future of skin metagenomics. Research in Microbiology, 2014, 165, 69-76.	2.1	23
35	Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library. Journal of Biotechnology, 2014, 190, 18-29.	3.8	26
36	Microbial community development and unseen diversity recovery in inoculated sterile soil. Biology and Fertility of Soils, 2014, 50, 1069-1076.	4.3	53

#	Article	IF	CITATIONS
37	Ethyl tert-butyl ether (ETBE)-degrading microbial communities in enrichments from polluted environments. Journal of Hazardous Materials, 2014, 279, 502-510.	12.4	6
38	Large-Scale Metagenomic-Based Study of Antibiotic Resistance in the Environment. Current Biology, 2014, 24, 1096-1100.	3.9	246
39	Ethyl tert-butyl ether (ETBE) biodegradation by a syntrophic association of Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP 2049 isolated from a polluted aquifer. Applied Microbiology and Biotechnology, 2013, 97, 10531-10539.	3.6	22
40	Selective occurrence of <i><scp>R</scp>hizobiales</i> in frost flowers on the surface of young sea ice near <scp>B</scp> arrow, <scp>A</scp> laska and distribution in the polar marine rare biosphere. Environmental Microbiology Reports, 2013, 5, 575-582.	2.4	14
41	Bioaugmentation for Groundwater Remediation: an Overview. , 2013, , 1-37.		10
42	Mastering methodological pitfalls for surviving the metagenomic jungle. BioEssays, 2013, 35, 744-754.	2.5	14
43	Microbial nitrogen cycling in Arctic snowpacks. Environmental Research Letters, 2013, 8, 035004.	5.2	43
44	Life on Human Surfaces: Skin Metagenomics. PLoS ONE, 2013, 8, e65288.	2.5	44
45	Soil Bacterial Community Shifts after Chitin Enrichment: An Integrative Metagenomic Approach. PLoS ONE, 2013, 8, e79699.	2.5	99
46	Interactions between Snow Chemistry, Mercury Inputs and Microbial Population Dynamics in an Arctic Snowpack. PLoS ONE, 2013, 8, e79972.	2.5	50
47	The Dynamic Arctic Snow Pack: An Unexplored Environment for Microbial Diversity and Activity. Biology, 2013, 2, 317-330.	2.8	54
48	Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME Journal, 2012, 6, 1677-1687.	9.8	206
49	Describing microbial communities and performing global comparisons in the â€~omic era. ISME Journal, 2012, 6, 1625-1628.	9.8	42
50	<i>In situ</i> TCE degradation mediated by complex dehalorespiring communities during biostimulation processes. Microbial Biotechnology, 2012, 5, 642-653.	4.2	52
51	Accessing the Soil Metagenome for Studies of Microbial Diversity. Applied and Environmental Microbiology, 2011, 77, 1315-1324.	3.1	269
52	Metagenomic exploration of antibiotic resistance in soil. Current Opinion in Microbiology, 2011, 14, 229-235.	5.1	86
53	Metagenomic comparison of direct and indirect soil DNA extraction approaches. Journal of Microbiological Methods, 2011, 86, 397-400.	1.6	113
54	Metagenomic mining for microbiologists. ISME Journal, 2011, 5, 1837-1843.	9.8	89

#	Article	IF	CITATIONS
55	Survey data are still vital to science. Nature, 2011, 469, 162-162.	27.8	3
56	Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles, 2010, 14, 205-212.	2.3	100
57	ls resistance futile? Changing external resistance does not improve microbial fuel cell performance. Bioelectrochemistry, 2010, 78, 2-7.	4.6	115
58	Cytochromes P450-mediated degradation of fuel oxygenates by environmental isolates. FEMS Microbiology Ecology, 2010, 72, 289-296.	2.7	42
59	Integrity and Biological Activity of DNA after UV Exposure. Astrobiology, 2010, 10, 285-292.	3.0	13
60	Human Pathogens Abundant in the Bacterial Metagenome of Cigarettes. Environmental Health Perspectives, 2010, 118, 351-356.	6.0	118
61	Bioremediation via In Situ Electrotransformation. Bioremediation Journal, 2010, 14, 109-119.	2.0	5
62	Leaching and transformability of transgenic DNA in unsaturated soil columns. Ecotoxicology and Environmental Safety, 2010, 73, 67-72.	6.0	19
63	Long-term persistence and bacterial transformation potential of transplastomic plant DNA in soil. Research in Microbiology, 2010, 161, 326-334.	2.1	12
64	Monitoring of bacterial communities during low temperature thermal treatment of activated sludge combining DNA phylochip and respirometry techniques. Water Research, 2010, 44, 6133-6143.	11.3	22
65	Comparative phylogenetic microarray analysis of microbial communities in TCE-contaminated soils. Chemosphere, 2010, 80, 600-607.	8.2	16
66	Characterization of Denitrification Gene Clusters of Soil Bacteria via a Metagenomic Approach. Applied and Environmental Microbiology, 2009, 75, 534-537.	3.1	57
67	Visual Evidence of Horizontal Gene Transfer between Plants and Bacteria in the Phytosphere of Transplastomic Tobacco. Applied and Environmental Microbiology, 2009, 75, 3314-3322.	3.1	73
68	Advantages of the metagenomic approach for soil exploration: reply from Vogel et al Nature Reviews Microbiology, 2009, 7, 756-757.	28.6	35
69	TerraGenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, 2009, 7, 252-252.	28.6	199
70	Extracellular plant DNA in Geneva groundwater and traditional artesian drinking water fountains. Chemosphere, 2009, 75, 498-504.	8.2	20
71	Evaluation of functional gene enrichment in a soil metagenomic clone library. Journal of Microbiological Methods, 2009, 76, 105-107.	1.6	21
72	Microbial community networks. FEMS Microbiology Ecology, 2008, 66, 1-2.	2.7	4

#	Article	IF	CITATIONS
73	The metagenomics of disease-suppressive soils – experiences from the METACONTROL project. Trends in Biotechnology, 2008, 26, 591-601.	9.3	99
74	A novel and rapid method for synthesizing positive controls and standards for quantitative PCR. Journal of Microbiological Methods, 2008, 73, 73-77.	1.6	8
75	Drugs from hidden bugs: their discovery via untapped resources. Research in Microbiology, 2008, 159, 153-161.	2.1	51
76	Strategy for In Situ Detection of Natural Transformation-Based Horizontal Gene Transfer Events. Applied and Environmental Microbiology, 2008, 74, 1250-1254.	3.1	40
77	Antibiotic-resistant soil bacteria in transgenic plant fields. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3957-3962.	7.1	143
78	Fate of transgenic plant DNA in the environment. Environmental Biosafety Research, 2007, 6, 15-35.	1.1	37
79	Horizontal Gene Transfer Regulation in Bacteria as a "Spandrel―of DNA Repair Mechanisms. PLoS ONE, 2007, 2, e1055.	2.5	54
80	Vertical advection of extracellular DNA by water capillarity in soil columns. Soil Biology and Biochemistry, 2007, 39, 158-163.	8.8	31
81	Detection of potential transgenic plant DNA recipients among soil bacteria. Environmental Biosafety Research, 2007, 6, 71-83.	1.1	26
82	Presentation of the Thematic Issue on Horizontal Gene Transfer. Environmental Biosafety Research, 2007, 6, 1-2.	1.1	1
83	Gene Flow in the Rhizosphere. Books in Soils, Plants, and the Environment, 2007, , 401-425.	0.1	0
84	Development of metagenomic DNA shuffling for the construction of a xenobiotic gene. Gene, 2006, 375, 87-94.	2.2	48
85	Development and validation of a prototype 16S rRNA-based taxonomic microarray for Alphaproteobacteria. Environmental Microbiology, 2006, 8, 289-307.	3.8	89
86	Plasmid-encoded γ-hexachlorocyclohexane degradation genes and insertion sequences inSphingobium francense(ex-Sphingomonas paucimobilisSp+). FEMS Microbiology Letters, 2006, 257, 243-252.	1.8	60
87	Potential of a 16S rRNA-Based Taxonomic Microarray for Analyzing the Rhizosphere Effects of Maize on Agrobacterium spp. and Bacterial Communities. Applied and Environmental Microbiology, 2006, 72, 4302-4312.	3.1	111
88	Natural Electrotransformation of Lightning-Competent Pseudomonas sp. Strain N3 in Artificial Soil Microcosms. Applied and Environmental Microbiology, 2006, 72, 2385-2389.	3.1	25
89	Type I Polyketide Synthases May Have Evolved Through Horizontal Gene Transfer. Journal of Molecular Evolution, 2005, 60, 716-725.	1.8	72
90	Effect of carbon and nitrogen input on the bacterial community structure of Neocaledonian nickel mine spoils. FEMS Microbiology Ecology, 2005, 51, 333-340.	2.7	16

#	Article	IF	CITATIONS
91	High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. Journal of Microbiological Methods, 2005, 62, 1-11.	1.6	113
92	Isolation of Lightning-Competent Soil Bacteria. Applied and Environmental Microbiology, 2004, 70, 6342-6346.	3.1	45
93	Phylogenetic Analysis of Polyketide Synthase I Domains from Soil Metagenomic Libraries Allows Selection of Promising Clones. Applied and Environmental Microbiology, 2004, 70, 5522-5527.	3.1	127
94	A novel method for characterizing the microscale 3D spatial distribution of bacteria in soil. Soil Biology and Biochemistry, 2003, 35, 1537-1546.	8.8	56
95	Fate and transport of antibiotic resistance genes in saturated soil columns. European Journal of Soil Biology, 2003, 39, 65-71.	3.2	75
96	Extraction of DNA from soil. European Journal of Soil Biology, 2003, 39, 183-190.	3.2	241
97	Degradation and Transformability of DNA from Transgenic Leaves. Applied and Environmental Microbiology, 2003, 69, 673-678.	3.1	92
98	Intergeneric Transfer of Chromosomal and Conjugative Plasmid Genes Between Ralstonia solanacearum and Acinetobacter sp. BD413. Molecular Plant-Microbe Interactions, 2003, 16, 74-82.	2.6	16
99	In Situ Transfer of Antibiotic Resistance Genes from Transgenic (Transplastomic) Tobacco Plants to Bacteria. Applied and Environmental Microbiology, 2002, 68, 3345-3351.	3.1	182
100	Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates. Biodegradation, 2001, 12, 49-57.	3.0	61
101	Laboratory-Scale Evidence for Lightning-Mediated Gene Transfer in Soil. Applied and Environmental Microbiology, 2001, 67, 3440-3444.	3.1	61
102	Characterization of a soil bacterial consortium capable of degrading diesel fuel. International Biodeterioration and Biodegradation, 1999, 44, 93-100.	3.9	78
103	Factors Controlling the Biodegradation of Chemicals in Soils. , 1999, , 93-117.		2
104	Evaluation of Soil Organic Matter Polarity by Pyrene Fluorescence Spectrum Variations. Environmental Science & Technology, 1997, 31, 2701-2706.	10.0	39
105	Bioaugmentation as a soil bioremediation approach. Current Opinion in Biotechnology, 1996, 7, 311-316.	6.6	262
106	Kinetics of Toluene Degradation by Denitrifying Aquifer Microorganisms. Journal of Environmental Engineering, ASCE, 1994, 120, 1327-1336.	1.4	30
107	Effect of hydrogen peroxide on the biodegradation of PCBs in anaerobically dechlorinated river sediments. Biodegradation, 1994, 4, 241-248.	3.0	11
108	Effects of electron acceptors and donors on transformation of tetrachloromethane byShewanella putrefaciensMR-1. FEMS Microbiology Letters, 1994, 121, 357-363.	1.8	61

#	Article	IF	CITATIONS
109	Reduction dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol: mechanistic study, effect of redox potential and pH. Environmental Science & Technology, 1994, 28, 246-252.	10.0	91
110	Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-1. FEMS Microbiology Letters, 1994, 121, 357-363.	1.8	4
111	Comparison of substrate utilization and growth kinetics between immobilized and suspendedPseudomonas cells. Biotechnology and Bioengineering, 1993, 41, 370-379.	3.3	74
112	Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Water Research, 1993, 27, 685-691.	11.3	64
113	Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: Comparisons With experimental measurements. Water Resources Research, 1992, 28, 1833-1847.	4.2	149
114	Dechlorination of 2,3,5,6-tetrachlorobiphenyl by a phototrophic enrichment culture. FEMS Microbiology Letters, 1992, 94, 247-250.	1.8	13
115	Development of pure culture biofilms ofP. putida on solid supports. Biotechnology and Bioengineering, 1991, 37, 512-518.	3.3	23
116	Kinetics of aerobic biodegradation of benzene and toluene in sandy aquifer material. Biodegradation, 1991, 2, 43-51.	3.0	131
117	Identification of the Proton Source for the Microbial Reductive Dechlorination of 2,3,4,5,6-Pentachlorobiphenyl. Applied and Environmental Microbiology, 1991, 57, 2771-2774.	3.1	30
118	Effects of Organic Substrates on Dechlorination of Aroclor 1242 in Anaerobic Sediments. Applied and Environmental Microbiology, 1990, 56, 2612-2617.	3.1	122
119	Reaction products and rates of disappearance of simple bromoalkanes, 1,2-dibromopropane, and 1,2-dibromoethane in water. Reply to comments. Environmental Science & Technology, 1988, 22, 231-231.	10.0	2
120	ES&T Critical Reviews: Transformations of halogenated aliphatic compounds. Environmental Science & Technology, 1987, 21, 722-736.	10.0	935
121	Correction. Reaction Products and Rates of Disappearance of Simple Bromoalkanes, 1,2-Dibromopropane, and 1,2-Dibromoethane in Water. Environmental Science & Technology, 1987, 21, 512-512.	10.0	0
122	Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions. Environmental Science & Technology, 1987, 21, 1208-1213.	10.0	147
123	Rate of abiotic formation of 1,1-dichloroethylene from 1,1,1-trichloroethane in groundwater. Journal of Contaminant Hydrology, 1987, 1, 299-308.	3.3	53
124	Reaction products and rates of disappearance of simple bromoalkanes, 1,2-dibromopropane, and 1,2-dibromoethane in water. Environmental Science & Technology, 1986, 20, 992-997.	10.0	37
125	Incorporation of Oxygen from Water into Toluene and Benzene during Anaerobic Fermentative Transformation. Applied and Environmental Microbiology, 1986, 52, 200-202.	3.1	238
126	Low-temperature formation of hydrocarbon gases in San Francisco Bay sediment (California, U.S.A.). Chemical Geology, 1982, 37, 289-298.	3.3	56

#	Article	IF	CITATIONS
127	Geochemical prospecting for hydrocarbons in the outer continental shelf, Southern Bering Sea, Alaska. Journal of Geochemical Exploration, 1981, 14, 209-219.	3.2	22
128	Microorganisms Floating Through the Air. Frontiers for Young Minds, 0, 10, .	0.8	1
129	Environmental and Anthropogenic Factors Shape the Snow Microbiome and Antibiotic Resistome. Frontiers in Microbiology, 0, 13, .	3.5	4