Manthena V S Varma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6960885/publications.pdf

Version: 2024-02-01

47 papers

2,270 citations

201674 27 h-index 214800 47 g-index

48 all docs 48 docs citations

48 times ranked 1645 citing authors

#	Article	IF	CITATIONS
1	Clinical Implications of Altered Drug Transporter Abundance/Function and <scp>PBPK</scp> Modeling in Specific Populations: An <scp>ITC</scp> Perspective. Clinical Pharmacology and Therapeutics, 2022, 112, 501-526.	4.7	21
2	Drugâ€Drug Interactions Involving Renal OCT2/MATE Transporters: Clinical Risk Assessment May Require Endogenous Biomarkerâ€Informed Approach. Clinical Pharmacology and Therapeutics, 2021, 110, 855-859.	4.7	23
3	Effect of Human Plasma on Hepatic Uptake of Organic Anion–Transporting Polypeptide 1B Substrates: Studies Using Transfected Cells and Primary Human Hepatocytes. Drug Metabolism and Disposition, 2021, 49, 72-83.	3.3	17
4	Organic Anion–Transporting Polypeptide 1B1/1B3–Mediated Hepatic Uptake Determines the Pharmacokinetics of Large Lipophilic Acids: In Vitro–In Vivo Evaluation in Cynomolgus Monkey. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 169-180.	2.5	12
5	In Vitro–to–In Vivo Extrapolation of Transporter-Mediated Renal Clearance: Relative Expression Factor Versus Relative Activity Factor Approach. Drug Metabolism and Disposition, 2021, 49, 470-478.	3.3	17
6	Quantitative prediction of breast cancer resistant protein mediated drugâ€drug interactions using physiologicallyâ€based pharmacokinetic modeling. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 1018-1031.	2.5	22
7	Quantitative Proteomics and Mechanistic Modeling of Transporterâ€Mediated Disposition in Nonalcoholic Fatty Liver Disease. Clinical Pharmacology and Therapeutics, 2020, 107, 1128-1137.	4.7	51
8	Induction of Human Intestinal and Hepatic Organic Anion Transporting Polypeptides: Where Is the Evidence for Its Relevance in Drug-Drug Interactions?. Drug Metabolism and Disposition, 2020, 48, 205-216.	3.3	36
9	Predicting the Human Hepatic Clearance of Acidic and Zwitterionic Drugs. Journal of Medicinal Chemistry, 2020, 63, 11831-11844.	6.4	14
10	Optimizing the Benefit/Risk of Acetyl-CoA Carboxylase Inhibitors through Liver Targeting. Journal of Medicinal Chemistry, 2020, 63, 10879-10896.	6.4	19
11	Cytochrome-P450-Mediated Drug – < /b>Drug Interactions of Substrate Drugs: Assessing Clinical Risk Based on Molecular Properties and an Extended Clearance Classification System. Molecular Pharmaceutics, 2020, 17, 3024-3032.	4.6	8
12	Nicotinic acid transport into human liver involves organic anion transporter 2 (SLC22A7). Biochemical Pharmacology, 2020, 174, 113829.	4.4	22
13	Transporter–enzyme interplay and the hepatic drug clearance: what have we learned so far?. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 387-401.	3.3	14
14	Mechanistic Evaluation of the Complex Drug-Drug Interactions of Maraviroc: Contribution of Cytochrome P450 3A, P-Glycoprotein and Organic Anion Transporting Polypeptide 1B1. Drug Metabolism and Disposition, 2019, 47, 493-503.	3.3	17
15	Quantitative Contribution of Six Major Transporters to the Hepatic Uptake of Drugs: "SLC-Phenotyping―Using Primary Human Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 72-83.	2.5	58
16	Clopidogrel as a Perpetrator of Drug–Drug Interactions: A Challenge for Quantitative Predictions?. Clinical Pharmacology and Therapeutics, 2019, 105, 1295-1299.	4.7	12
17	Effect of Hepatic Organic Anionâ€Transporting Polypeptide 1B Inhibition and Chronic Kidney Disease on the Pharmacokinetics of a Liverâ€Targeted Glucokinase Activator: A Modelâ€Based Evaluation. Clinical Pharmacology and Therapeutics, 2019, 106, 792-802.	4.7	21
18	Role of Hepatic Organic Anion Transporter 2 in the Pharmacokinetics of $\langle i \rangle R \langle i \rangle$ -and $\langle i \rangle S \langle i \rangle$ -Warfarin: In Vitro Studies and Mechanistic Evaluation. Molecular Pharmaceutics, 2018, 15, 1284-1295.	4.6	41

#	Article	IF	CITATIONS
19	Navigating Transporter Sciences in Pharmacokinetics Characterization Using the Extended Clearance Classification System. Drug Metabolism and Disposition, 2018, 46, 729-739.	3.3	37
20	Comparison of Proteomic Quantification Approaches for Hepatic Drug Transporters: Multiplexed Global Quantitation Correlates with Targeted Proteomic Quantitation. Drug Metabolism and Disposition, 2018, 46, 692-696.	3.3	25
21	Organic Anion Transporter 2 Mediates Hepatic Uptake of Tolbutamide, a CYP2C9 Probe Drug. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 390-398.	2.5	35
22	Organic Anion Transporter 2–Mediated Hepatic Uptake Contributes to the Clearance of High-Permeability–Low-Molecular-Weight Acid and Zwitterion Drugs: Evaluation Using 25 Drugs. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 322-334.	2.5	44
23	Quantification of Hepatic Organic Anion Transport Proteins OAT2 and OAT7 in Human Liver Tissue and Primary Hepatocytes. Molecular Pharmaceutics, 2018, 15, 3227-3235.	4.6	21
24	Simultaneous Assessment of Transporter-Mediated Drug–Drug Interactions Using a Probe Drug Cocktail in Cynomolgus Monkey. Drug Metabolism and Disposition, 2018, 46, 1179-1189.	3.3	34
25	Reliable Rate Measurements for Active and Passive Hepatic Uptake Using Plated Human Hepatocytes. AAPS Journal, 2017, 19, 787-796.	4.4	39
26	Quantitative Prediction of Human Renal Clearance and Drug-Drug Interactions of Organic Anion Transporter Substrates Using In Vitro Transport Data: A Relative Activity Factor Approach. Drug Metabolism and Disposition, 2017, 45, 409-417.	3.3	95
27	Transporter-Mediated Disposition, Clinical Pharmacokinetics and Cholestatic Potential of Glyburide and Its Primary Active Metabolites. Drug Metabolism and Disposition, 2017, 45, 737-747.	3.3	8
28	Hepatobiliary Clearance Prediction: Species Scaling From Monkey, Dog, and Rat, and InÂVitro–InÂVivo Extrapolation of Sandwich-Cultured Human Hepatocytes Using 17 Drugs. Journal of Pharmaceutical Sciences, 2017, 106, 2795-2804.	3.3	59
29	Molecular properties associated with transporter-mediated drug disposition. Advanced Drug Delivery Reviews, 2017, 116, 92-99.	13.7	22
30	Extended Clearance Classification System (ECCS) informed approach for evaluating investigational drugs as substrates of drug transporters. Clinical Pharmacology and Therapeutics, 2017, 102, 33-36.	4.7	36
31	Transporterâ€Mediated Hepatic Uptake Plays an Important Role in the Pharmacokinetics and Drug–Drug Interactions of Montelukast. Clinical Pharmacology and Therapeutics, 2017, 101, 406-415.	4.7	43
32	Quantitative Prediction of Drug–Drug Interactions Involving Inhibitory Metabolites in Drug Development: How Can Physiologically Based Pharmacokinetic Modeling Help?. CPT: Pharmacometrics and Systems Pharmacology, 2016, 5, 505-515.	2.5	19
33	Dealing with the complex drug–drug interactions: Towards mechanistic models. Biopharmaceutics and Drug Disposition, 2015, 36, 71-92.	1.9	58
34	Quantitative Rationalization of Gemfibrozil Drug Interactions: Consideration of Transporters-Enzyme Interplay and the Role of Circulating Metabolite Gemfibrozil $1-\langle i\rangle O \langle i\rangle -\langle i\rangle \hat{l}^2 \langle i\rangle$ -Glucuronide. Drug Metabolism and Disposition, 2015, 43, 1108-1118.	3.3	65
35	Quantitative Prediction of Transporter- and Enzyme-Mediated Clinical Drug-Drug Interactions of Organic Anion-Transporting Polypeptide 1B1 Substrates Using a Mechanistic Net-Effect Model. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 214-223.	2.5	61
36	Prediction of Pharmacokinetics and Drugâ€"Drug Interactions When Hepatic Transporters are Involved. Clinical Pharmacokinetics, 2014, 53, 659-678.	3.5	92

#	Article	IF	CITATIONS
37	Mechanism-Based Pharmacokinetic Modeling to Evaluate Transporter-Enzyme Interplay in Drug Interactions and Pharmacogenetics of Glyburide. AAPS Journal, 2014, 16, 736-748.	4.4	47
38	Response to the Comment on the Article "Physiologically Based Modeling of Pravastatin Transporter-Mediated Hepatobiliary Disposition and Drug-Drug Interactions― Pharmaceutical Research, 2013, 30, 1469-1470.	3.5	3
39	Mechanistic Modeling to Predict the Transporter- and Enzyme-Mediated Drug-Drug Interactions of Repaglinide. Pharmaceutical Research, 2013, 30, 1188-1199.	3.5	96
40	Model-based approaches to predict drug–drug interactions associated with hepatic uptake transporters: preclinical, clinical and beyond. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 459-472.	3.3	63
41	Quantitative Prediction of Repaglinide-Rifampicin Complex Drug Interactions Using Dynamic and Static Mechanistic Models: Delineating Differential CYP3A4 Induction and OATP1B1 Inhibition Potential of Rifampicin. Drug Metabolism and Disposition, 2013, 41, 966-974.	3.3	55
42	Physicochemical Property Space of Hepatobiliary Transport and Computational Models for Predicting Rat Biliary Excretion. Drug Metabolism and Disposition, 2012, 40, 1527-1537.	3.3	66
43	Physiologically Based Modeling of Pravastatin Transporter-Mediated Hepatobiliary Disposition and Drug-Drug Interactions. Pharmaceutical Research, 2012, 29, 2860-2873.	3.5	122
44	pH-Sensitive Interaction of HMG-CoA Reductase Inhibitors (Statins) with Organic Anion Transporting Polypeptide 2B1. Molecular Pharmaceutics, 2011, 8, 1303-1313.	4.6	97
45	Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 939-952.	3.3	82
46	Physicochemical Space for Optimum Oral Bioavailability: Contribution of Human Intestinal Absorption and First-Pass Elimination. Journal of Medicinal Chemistry, 2010, 53, 1098-1108.	6.4	247
47	Physicochemical Determinants of Human Renal Clearance. Journal of Medicinal Chemistry, 2009, 52, 4844-4852.	6.4	174