Piero Attilio Bianco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6960681/publications.pdf

Version: 2024-02-01

71 papers 1,841 citations

257450 24 h-index 289244 40 g-index

74 all docs

74 docs citations

74 times ranked 1492 citing authors

#	Article	IF	CITATIONS
1	Dissecting the susceptibility/resistance mechanism of <i>Vitis vinifera</i> for the future control of downy mildew. BIO Web of Conferences, 2022, 44, 04002.	0.2	2
2	Real-Time On-Site Diagnosis of Quarantine Pathogens in Plant Tissues by Nanopore-Based Sequencing. Pathogens, 2022, 11, 199.	2.8	21
3	In Silico Three-Dimensional (3D) Modeling of the SecY Protein of â€̃Candidatus Phytoplasma Solani' Strains Associated with Grapevine "Bois Noir―and Its Possible Relationship with Strain Virulence. International Journal of Plant Biology, 2022, 13, 15-30.	2.6	1
4	Biocontrol Potential of Endophytic Plant-Growth-Promoting Bacteria against Phytopathogenic Viruses: Molecular Interaction with the Host Plant and Comparison with Chitosan. International Journal of Molecular Sciences, 2022, 23, 6990.	4.1	3
5	Role of terpenes in plant defense to biotic stress. , 2021, , 401-417.		15
6	Georgian Grapevine Cultivars: Ancient Biodiversity for Future Viticulture. Frontiers in Plant Science, 2021, 12, 630122.	3.6	26
7	Molecular and spatial analyses reveal new insights on Bois noir epidemiology in Franciacorta vineyards. Annals of Applied Biology, 2021, 179, 151-168.	2.5	11
8	From plant resistance response to the discovery of antimicrobial compounds: The role of volatile organic compounds (VOCs) in grapevine downy mildew infection. Plant Physiology and Biochemistry, 2021, 160, 294-305.	5.8	32
9	RNAi of a Putative Grapevine Susceptibility Gene as a Possible Downy Mildew Control Strategy. Frontiers in Plant Science, 2021, 12, 667319.	3.6	25
10	Peach witches'-broom, an emerging disease associated with â€~Candidatus Phytoplasma phoenicium' and â€~Candidatus Phytoplasma aurantifolia' in Iran. Crop Protection, 2020, 127, 104946.	2.1	14
11	Genetic structure of Italian population of the grapevine downy mildew agent, Plasmopara viticola. Annals of Applied Biology, 2020, 176, 257-267.	2.5	25
12	Rpv29, Rpv30 and Rpv31: Three Novel Genomic Loci Associated With Resistance to Plasmopara viticola in Vitis vinifera. Frontiers in Plant Science, 2020, 11, 562432.	3.6	38
13	Bacterial microbiota associated with insect vectors of grapevine Bois noir disease in relation to phytoplasma infection. FEMS Microbiology Ecology, 2020, 96, .	2.7	4
14	Multilocus Genotyping Reveals New Molecular Markers for Differentiating Distinct Genetic Lineages among "Candidatus Phytoplasma Solani―Strains Associated with Grapevine Bois Noir. Pathogens, 2020, 9, 970.	2.8	5
15	Novel Aspects on The Interaction Between Grapevine and Plasmopara viticola: Dual-RNA-Seq Analysis Highlights Gene Expression Dynamics in The Pathogen and The Plant During The Battle For Infection. Genes, 2020, 11, 261.	2.4	37
16	Characterization of fungicide sensitivity profiles of Botrytis cinerea populations sampled in Lombardy (Northern Italy) and implications for resistance management. Pest Management Science, 2020, 76, 2198-2207.	3.4	8
17	Proposal of A New Bois Noir Epidemiological Pattern Related to  Candidatus Phytoplasma Solani' Strains Characterized by A Possible Moderate Virulence in Tuscany. Pathogens, 2020, 9, 268.	2.8	13
18	Molecular identification and characterization of phytoplasmas infecting tomato in North Italy. European Journal of Plant Pathology, 2019, 153, 293-299.	1.7	2

#	Article	IF	CITATIONS
19	Vitex agnusâ€castus cannot be used as trap plant for the vector Hyalesthes obsoletus to prevent infections by â€~ Candidatus Phytoplasma solani' in northern Italian vineyards: Experimental evidence. Annals of Applied Biology, 2019, 175, 302-312.	2.5	7
20	Integrated Management of Phytoplasma Diseases. , 2019, , 237-258.		4
21	Identification and ecology of alternative insect vectors of â€~Candidatus Phytoplasma solani' to grapevine. Scientific Reports, 2019, 9, 19522.	3.3	35
22	First Report of â€~ <i>Candidatus</i> Phytoplasma aurantifolia'-Related Strains Infecting Potato (<i>Solanum tuberosum</i>) in Jordan. Plant Disease, 2019, 103, 1406-1406.	1.4	11
23	â€~ <i>Candidatus</i> Phytoplasma phoenicium' associated with apricot yellows and peach witches' broom in Iran. Phytopathogenic Mollicutes, 2019, 9, 215.	0.1	2
24	Genetic diversity of â€~Candidatus Phytoplasma phoenicium' strain populations associated with almond witches' broom in Lebanon and Iran. Phytopathogenic Mollicutes, 2019, 9, 217.	0.1	3
25	"Bois noir―incidence reduction by grafting recovered grapevine shoots. Phytopathogenic Mollicutes, 2019, 9, 181.	0.1	О
26	Molecular Typing of Bois Noir Phytoplasma Strains in the Chianti Classico Area (Tuscany, Central) Tj ETQq0 0 0 rgl Phytopathology, 2018, 108, 362-373.	3T /Overlo 2.2	ck 10 Tf 50 25
27	Fruit Crop Phytoplasmas. , 2018, , 153-190.		14
28	Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Scientific Reports, 2018, 8, 12523.	3.3	50
29	Studies of Microbiota Dynamics Reveals Association of "Candidatus Liberibacter Asiaticus―Infection with Citrus (Citrus sinensis) Decline in South of Iran. International Journal of Molecular Sciences, 2018, 19, 1817.	4.1	12
30	A timeâ€course investigation of resistance to the carboxylic acid amide mandipropamid in field populations of <i>Plasmopara viticola</i> treated with antiâ€resistance strategies. Pest Management Science, 2018, 74, 2822-2834.	3.4	39
31	Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiological Research, 2017, 198, 16-26.	5.3	29
32	New insights on Flavescence dorée phytoplasma ecology in the vineyard agroâ€ecosystem in southern Switzerland. Annals of Applied Biology, 2017, 171, 37-51.	2.5	28
33	Identification of new -J and -K 16SrXII subgroups and distinct single nucleotide polymorphism genetic lineages among †Candidatus Phytoplasma solani' strains associated with bois noir in Central Italy. Australasian Plant Pathology, 2017, 46, 31-34.	1.0	13
34	First Report of a New Citrus Decline Disease (CDD) in Association with Double and Single Infection by â€~ <i>Candidatus</i> Liberibacter asiaticus' and â€~ <i>Candidatus</i> Phytoplasma aurantifolia' Related Strains in Iran. Plant Disease, 2017, 101, 2145-2145.	1.4	6
35	Declinación de la vid en Túnez asociada a hongos de las familias Diaporthaceae y Botryosphaeriaceae. Ciencia E Investigacion Agraria, 2017, 44, 127-138.	0.2	5
36	Identification and Characterization of New â€~ <i>Candidatus</i> Phytoplasma solani' Strains Associated with Bois Noir Disease in <i>Vitis vinifera</i> L. Cultivars Showing a Range of Symptom Severity in Georgia, the Caucasus Region. Plant Disease, 2016, 100, 904-915.	1.4	42

#	Article	IF	CITATIONS
37	First Report of SDHI Resistant Strains of <i>Venturia inaequalis</i> From Commercial Orchards in Northern Italy. Plant Disease, 2016, 100, 2324.	1.4	5
38	A cixiid survey for natural potential vectors of <i>Candidatus</i> Phytoplasma phoenicium' in Lebanon and preliminary transmission trials. Annals of Applied Biology, 2015, 166, 372-388.	2.5	65
39	â€~Candidatus Phytoplasma phoenicium' associated with almond witches'-broom disease: from draft genome to genetic diversity among strain populations. BMC Microbiology, 2015, 15, 148.	3.3	38
40	Investigation on †bois noir†epidemiology in northâ€eastern Italian vineyards through a multidisciplinary approach. Annals of Applied Biology, 2015, 166, 75-89.	2.5	37
41	Epidemiological role of spontaneous weeds in the spreading of "bois noir―phytoplasma. Phytopathogenic Mollicutes, 2015, 5, S105.	0.1	2
42	First Report of <i>Candidatus</i> Phytoplasma solani' and <i>Ca.</i> P. convolvuli' Associated with Grapevine Bois Noir and Bindweed Yellows, Respectively, in Georgia. Plant Disease, 2014, 98, 1151-1151.	1.4	13
43	Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiology, 2014, 14, 198.	3.3	63
44	<i>Curtobacterium</i> sp. Genome Sequencing Underlines Plant Growth Promotion-Related Traits. Genome Announcements, 2014, 2, .	0.8	15
45	<i>Asymmetrasca decedens</i> (Cicadellidae, Typhlocybinae), a natural vector of <i>Candidatus</i> Phytoplasma phoenicium'. Annals of Applied Biology, 2014, 165, 395-403.	2.5	28
46	First Report of <i>Grapevine virus A</i> and <i>Grapevine fleck virus</i> in the Former Yugoslav Republic of Macedonia. Plant Disease, 2014, 98, 1747-1747.	1.4	8
47	â€~ Candidatus Phytoplasma solani', a novel taxon associated with stolbur- and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2879-2894.	1.7	190
48	First Report of â€~ <i>Candidatus</i> Phytoplasma solani' Strains Associated with Grapevine Bois Noir in Jordan. Plant Disease, 2013, 97, 1505-1505.	1.4	16
49	Perspectives of endophytes as biocontrol agents in the management of phytoplasma diseases. Phytopathogenic Mollicutes, 2013, 3, 56.	0.1	3
50	Endophytic bacterial community living in roots of healthy and â€~Candidatus Phytoplasma mali'-infected apple (Malus domestica, Borkh.) trees. Antonie Van Leeuwenhoek, 2012, 102, 677-687.	1.7	50
51	Sequence analyses of <scp>\$10</scp> â€ <i>spc</i> operon among <scp>16SrV</scp> group phytoplasmas: phylogenetic relationships and identification of discriminating single nucleotide polymorphisms. Annals of Applied Biology, 2012, 161, 234-246.	2.5	8
52	Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants. Applied and Environmental Microbiology, 2011, 77, 5018-5022.	3.1	86
53	â€~ <i>Candidatus</i> Liberibacter europaeus' sp. nov. that is associated with and transmitted by the psyllid <i>Cacopsylla pyri</i> apparently behaves as an endophyte rather than a pathogen. Environmental Microbiology, 2011, 13, 414-426.	3.8	84
54	Multiple gene analyses reveal extensive genetic diversity among †Candidatus Phytoplasma mali†M populations. Annals of Applied Biology, 2011, 158, 257-266.	2.5	17

#	Article	IF	CITATIONS
55	Molecular typing of Coorg black pepper yellows phytoplasma by multiple gene analyses. Annals of Applied Biology, 2011, 159, 58-68.	2.5	6
56	Conventional and novel strategies for the phytoplasma diseases containment. Phytopathogenic Mollicutes, $2011,1,77.$	0.1	4
57	Almond witches' broom phytoplasma: situation in Lebanon. Phytopathogenic Mollicutes, 2011, 1, 99.	0.1	0
58	Stone fruit phytoplasma disease management in Lebanon. Phytopathogenic Mollicutes, 2011, 1, 103.	0.1	0
59	Reverse transcription-duplex-polymerase chain reaction for simultaneous detection of Citrus tristeza virus and †Candidatus Liberibacter' from citrus plants. Journal of Plant Diseases and Protection, 2010, 117, 241-243.	2.9	7
60	Distinct rpsC single nucleotide polymorphism lineages of Flavescence Dorée subgroup 16SrV-D phytoplasma co-infect Vitis vinifera L Folia Microbiologica, 2010, 55, 251-257.	2.3	12
61	Flavescence dor \tilde{A} ©e phytoplasma affecting grapevine (<i>Vitis vinifera</i>) newly reported in Portugal. Plant Pathology, 2010, 59, 398-398.	2.4	13
62	Identification and Molecular Characterization of â€Â~ <i>Candidatus</i> Phytoplasma mali' Isolates in North-western Italy. Journal of Phytopathology, 2010, 158, 81-87.	1.0	22
63	Genetic diversity among  Candidatus Liberibacter asiaticus' isolates based on single nucleotide polymorphisms in 16S rRNA and ribosomal protein genes. Annals of Microbiology, 2009, 59, 681-688.	2.6	21
64	Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. Journal of Microbiology, 2009, 47, 393-401.	2.8	90
65	Induced expression of sucrose synthase and alcohol dehydrogenase I genes in phytoplasmaâ€infected grapevine plants grown in the field. Plant Pathology, 2009, 58, 170-180.	2.4	54
66	First report of a â€~ <i>Candidatus</i> Phytoplasma asteris'â€related strain associated with a yellows disease of black pepper (<i>Piper nigrum</i>) in India. Plant Pathology, 2009, 58, 789-789.	2.4	12
67	New 16Sr subgroups and distinct single nucleotide polymorphism lineages among grapevine Bois noir phytoplasma populations. Annals of Applied Biology, 2009, 154, 279-289.	2.5	43
68	Role of <1>Myzus persicae 1 (Hemiptera: Aphididae) and Its Secondary Hosts in Plum Pox Virus Propagation. Journal of Economic Entomology, 2007, 100, 1047-1052.	1.8	12
69	Solanum malacoxylon, a New Natural Host of Stolbur Phytoplasma. Journal of Phytopathology, 2007, 156, 071003002748004-???.	1.0	3
70	A Novel Bacteroidetes Symbiont Is Localized in Scaphoideus titanus, the Insect Vector of Flavescence Dorele in Vitis vinifera. Applied and Environmental Microbiology, 2006, 72, 1467-1475.	3.1	89
71	Genetic variability among flavescence dor \tilde{A} ©e phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes, 2002, 16, 197-208.	2.1	95