
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6960331/publications.pdf Version: 2024-02-01

IOSEDH Y I O

#	Article	IF	CITATIONS
1	Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Networks, 2008, 21, 427-436.	5.9	569
2	Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 2020, 3, e200265.	5.9	236
3	Computer-Aided Detection (CAD) in Screening Mammography: Sensitivity of Commercial CAD Systems for Detecting Architectural Distortion. American Journal of Roentgenology, 2003, 181, 1083-1088.	2.2	198
4	A Knowledge-Based Approach to Improving and Homogenizing Intensity Modulated Radiation Therapy Planning Quality Among Treatment Centers: An Example Application to Prostate Cancer Planning. International Journal of Radiation Oncology Biology Physics, 2013, 87, 176-181.	0.8	191
5	Knowledge-based IMRT treatment planning for prostate cancer. Medical Physics, 2011, 38, 2515-2522.	3.0	153
6	Prediction of breast cancer malignancy using an artificial neural network. Cancer, 1994, 74, 2944-2948.	4.1	149
7	Breast Tomosynthesis. Academic Radiology, 2011, 18, 1298-1310.	2.5	149
8	A framework for optimising the radiographic technique in digital X-ray imaging. Radiation Protection Dosimetry, 2005, 114, 220-229.	0.8	127
9	Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms. Medical Physics, 2006, 34, 140-150.	3.0	107
10	Breast Mass Lesions: Computer-aided Diagnosis Models with Mammographic and Sonographic Descriptors. Radiology, 2007, 244, 390-398.	7.3	96
11	Virtual clinical trials in medical imaging: a review. Journal of Medical Imaging, 2020, 7, 1.	1.5	93
12	Self-organizing map for cluster analysis of a breast cancer database. Artificial Intelligence in Medicine, 2003, 27, 113-127.	6.5	88
13	Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data. Medical Physics, 2015, 42, 4116-4126.	3.0	86
14	Efficient Fourier-Wavelet Super-Resolution. IEEE Transactions on Image Processing, 2010, 19, 2669-2681.	9.8	76
15	Optimization of exposure parameters in full field digital mammography. Medical Physics, 2008, 35, 2414-2423.	3.0	75
16	Optimized image acquisition for breast tomosynthesis in projection and reconstruction space. Medical Physics, 2009, 36, 4859-4869.	3.0	66
17	Computer-aided diagnosis of breast cancer: Artificial neural network approach for optimized merging of mammographic features. Academic Radiology, 1995, 2, 841-850.	2.5	63
18	Effect of patient histoy data on the prediction of breast cancer from mammographic findings with artificial neural networks. Academic Radiology, 1999, 6, 10-15.	2.5	62

#	Article	IF	CITATIONS
19	A novel physical anthropomorphic breast phantom for 2D and 3D xâ€ray imaging. Medical Physics, 2017, 44, 407-416.	3.0	62
20	Case-Based Reasoning Computer Algorithm that Uses Mammographic Findings for Breast Biopsy Decisions. American Journal of Roentgenology, 2000, 175, 1347-1352.	2.2	56
21	Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features. Journal of the American College of Radiology, 2018, 15, 527-534.	1.8	56
22	A case-based interpretable deep learning model for classification of mass lesions in digital mammography. Nature Machine Intelligence, 2021, 3, 1061-1070.	16.0	55
23	Fundamental imaging characteristics of a slot-scan digital chest radiographic system. Medical Physics, 2004, 31, 2687-2698.	3.0	53
24	Physical characterization of a prototype selenium-based full field digital mammography detector. Medical Physics, 2005, 32, 588-599.	3.0	50
25	Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis. Medical Physics, 2006, 33, 2945-2954.	3.0	50
26	Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis. Journal of Biomedical Informatics, 2011, 44, 815-823.	4.3	49
27	Segmentation of suspicious clustered microcalcifications in mammograms. Medical Physics, 2000, 27, 13-22.	3.0	46
28	Differences between Computer-aided Diagnosis of Breast Masses and That of Calcifications. Radiology, 2002, 223, 489-493.	7.3	45
29	Can Compression Be Reduced for Breast Tomosynthesis? Monte Carlo Study on Mass and Microcalcification Conspicuity in Tomosynthesis. Radiology, 2009, 251, 673-682.	7.3	43
30	Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223. Medical Physics, 2014, 41, 091501.	3.0	43
31	Quantitative scatter measurement in digital radiography using a photostimulable phosphor imaging system. Medical Physics, 1991, 18, 408-413.	3.0	42
32	Outcome Analysis of Patients with Acute Pancreatitis by Using an Artificial Neural Network. Academic Radiology, 2002, 9, 410-419.	2.5	42
33	Computer-aided Classification of Breast Masses: Performance and Interobserver Variability of Expert Radiologists versus Residents. Radiology, 2011, 258, 73-80.	7.3	42
34	Cross-Institutional Evaluation of BI-RADS Predictive Model for Mammographic Diagnosis of Breast Cancer. American Journal of Roentgenology, 2002, 178, 457-463.	2.2	41
35	Introduction to neutron stimulated emission computed tomography. Physics in Medicine and Biology, 2006, 51, 3375-3390.	3.0	41
36	Importance of pointâ€byâ€point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications. Medical Physics, 2007, 34, 3885-3892.	3.0	41

#	Article	IF	CITATIONS
37	A mathematical model platform for optimizing a multiprojection breast imaging system. Medical Physics, 2008, 35, 1337-1345.	3.0	41
38	Comparative Scatter and Dose Performance of Slot-Scan and Full-Field Digital Chest Radiography Systems. Radiology, 2005, 235, 940-949.	7.3	40
39	Automated breast mass detection in 3D reconstructed tomosynthesis volumes: A featureless approach. Medical Physics, 2008, 35, 3626-3636.	3.0	37
40	A Data Set and Deep Learning Algorithm for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images. JAMA Network Open, 2021, 4, e2119100.	5.9	37
41	Do serum biomarkers really measure breast cancer?. BMC Cancer, 2009, 9, 164.	2.6	36
42	A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Medical Physics, 2001, 28, 804-811.	3.0	35
43	Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes. Medical Image Analysis, 2021, 67, 101857.	11.6	35
44	Informationâ€ŧheoretic CAD system in mammography: Entropyâ€based indexing for computational efficiency and robust performance. Medical Physics, 2007, 34, 3193-3204.	3.0	34
45	Population of 224 realistic human subject-based computational breast phantoms. Medical Physics, 2015, 43, 23-32.	3.0	33
46	A technique optimization protocol and the potential for dose reduction in digital mammography. Medical Physics, 2010, 37, 962-969.	3.0	32
47	Development and Application of a Suite of 4-D Virtual Breast Phantoms for Optimization and Evaluation of Breast Imaging Systems. IEEE Transactions on Medical Imaging, 2014, 33, 1401-1409.	8.9	32
48	Impulse response analysis for several digital tomosynthesis mammography reconstruction algorithms. , 2005, , .		30
49	Scatter compensation in digital chest radiography using the posterior beam stop technique. Medical Physics, 1994, 21, 435-443.	3.0	29
50	Assessing task performance in FFDM, DBT, and synthetic mammography using uniform and anthropomorphic physical phantoms. Medical Physics, 2016, 43, 5593-5602.	3.0	29
51	Parameter optimization of a computer-aided diagnosis scheme for the segmentation of microcalcification clusters in mammograms. Medical Physics, 2002, 29, 475-483.	3.0	28
52	Can Digital Breast Tomosynthesis Replace Full-Field Digital Mammography? A Multireader, Multicase Study of Wide-Angle Tomosynthesis. American Journal of Roentgenology, 2019, 212, 1393-1399.	2.2	28
53	Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation. Medical Physics, 2016, 43, 2207-2217.	3.0	27
54	Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region. Journal of Medical Imaging, 2019, 6, 1.	1.5	27

JOSEPH Y LO

#	Article	IF	CITATIONS
55	Computer-aided Detection in Screening Mammography: Variability in Cues. Radiology, 2004, 233, 411-417.	7.3	26
56	Computer Aid for Decision to Biopsy Breast Masses on Mammography. Academic Radiology, 2005, 12, 671-680.	2.5	25
57	Computer-aided classification of breast microcalcification clusters: merging of features from image processing and radiologists. , 2003, 5032, 882.		24
58	Dedicated breast computed tomography: Volume image denoising via a partialâ€diffusion equation based technique. Medical Physics, 2008, 35, 1950-1958.	3.0	24
59	Cone beam x-ray CT will be superior to digital x-ray tomosynthesis in imaging the breast and delineating cancer. Medical Physics, 2008, 35, 409-411.	3.0	23
60	Quality assurance and training procedures for computerâ€aided detection and diagnosis systems in	3.0	22
61	Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis. Medical Physics, 2014, 41, 061908.	3.0	22
62	Comparative performance of multiview stereoscopic and mammographic display modalities for breast lesion detection. Medical Physics, 2011, 38, 1972-1980.	3.0	20
63	Multiprojection Correlation Imaging for Improved Detection of Pulmonary Nodules. American Journal of Roentgenology, 2007, 188, 1239-1245.	2.2	19
64	Semiautomated headâ€andâ€neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans. Medical Physics, 2015, 42, 4428-4434.	3.0	19
65	Growth Dynamics of Mammographic Calcifications: Differentiating Ductal Carcinoma in Situ from Benign Breast Disease. Radiology, 2019, 292, 77-83.	7.3	19
66	Prediction of Upstaged Ductal Carcinoma <i>In Situ</i> Using Forced Labeling and Domain Adaptation. IEEE Transactions on Biomedical Engineering, 2020, 67, 1565-1572.	4.2	19
67	Can Occult Invasive Disease in Ductal Carcinoma In Situ Be Predicted Using Computer-extracted Mammographic Features?. Academic Radiology, 2017, 24, 1139-1147.	2.5	18
68	Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features. Radiology, 2022, 303, 54-62.	7.3	17
69	Accuracy of Segmentation of a Commercial Computer-aided Detection System for Mammography. Radiology, 2005, 235, 385-390.	7.3	16
70	A fourâ€alternative forced choice (4AFC) methodology for evaluating microcalcification detection in clinical fullâ€field digital mammography (FFDM) and digital breast tomosynthesis (DBT) systems using an inkjetâ€printed anthropomorphic phantom. Medical Physics, 2019, 46, 3883-3892.	3.0	16
71	Gaussian frequency blending algorithm with matrix inversion tomosynthesis (MITS) and filtered back projection (FBP) for better digital breast tomosynthesis reconstruction. , 2006, , .		15
72	<i>i</i> Phantom: A Framework for Automated Creation of Individualized Computational Phantoms and Its Application to CT Organ Dosimetry. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3061-3072.	6.3	15

JOSEPH Y LO

#	Article	IF	CITATIONS
73	The quantitative potential for breast tomosynthesis imaging. Medical Physics, 2010, 37, 1004-1016.	3.0	14
74	Using computerâ€extracted image features for modeling of errorâ€making patterns in detection of mammographic masses among radiology residents. Medical Physics, 2014, 41, 091907.	3.0	14
75	Neutron-stimulated emission computed tomography of a multi-element phantom. Physics in Medicine and Biology, 2008, 53, 2313-2326.	3.0	13
76	Bayesian Restoration of Chest Radiographs Scatter Compensation with Improved Signal-to-Noise Ratio. Investigative Radiology, 1994, 29, 904-910.	6.2	12
77	Computerized classification of suspicious regions in chest radiographs using subregion Hotelling observers. Medical Physics, 2001, 28, 2403-2409.	3.0	12
78	Perceptron error surface analysis: a case study in breast cancer diagnosis. Computers in Biology and Medicine, 2002, 32, 99-109.	7.0	12
79	Synthetic breast phantoms from patient based eigenbreasts. Medical Physics, 2017, 44, 6270-6279.	3.0	11
80	A quantitative metrology for performance characterization of five breast tomosynthesis systems based on an anthropomorphic phantom. Medical Physics, 2016, 43, 1627-1638.	3.0	10
81	Assessment of taskâ€based performance from five clinical DBT systems using an anthropomorphic breast phantom. Medical Physics, 2021, 48, 1026-1038.	3.0	10
82	Application of likelihood ratio to classification of mammographic masses; performance comparison to case-based reasoning. Medical Physics, 2003, 30, 949-958.	3.0	9
83	Application of support vector machines to breast cancer screening using mammogram and clinical history data. , 2003, 5032, 546.		9
84	Population of 100 realistic, patient-based computerized breast phantoms for multi-modality imaging research. Proceedings of SPIE, 2014, , .	0.8	9
85	Second generation anthropomorphic physical phantom for mammography and DBT: Incorporating voxelized 3D printing and inkjet printing of iodinated lesion inserts. Proceedings of SPIE, 2016, , .	0.8	9
86	Anomaly Detection of Calcifications in Mammography Based on 11,000 Negative Cases. IEEE Transactions on Biomedical Engineering, 2022, 69, 1639-1650.	4.2	9
87	Neutron stimulated emission computed tomography: Background corrections. Nuclear Instruments & Methods in Physics Research B, 2007, 254, 329-336.	1.4	8
88	Impact of breast structure on lesion detection in breast tomosynthesis, a simulation study. Journal of Medical Imaging, 2016, 3, 1.	1.5	8
89	Efficient Registration of Aliased X-Ray Images. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 2007, , .	0.0	7
90	Methodology of NEQ (f) analysis for optimization and comparison of digital breast tomosynthesis acquisition techniques and reconstruction algorithms. , 2007, , .		7

#	Article	lF	CITATIONS
91	Predicting false negative errors in digital breast tomosynthesis among radiology trainees using a computer vision-based approach. Expert Systems With Applications, 2016, 56, 1-8.	7.6	7
92	Mixed-Methods Study to Predict Upstaging of DCIS to Invasive Disease on Mammography. American Journal of Roentgenology, 2021, 216, 903-911.	2.2	7
93	Cluster analysis of BI-RADS descriptions of biopsy-proven breast lesions. , 2002, , .		6
94	Incorporation of a Laguerre–Gauss Channelized Hotelling Observer for False-Positive Reduction in a Mammographic Mass CAD System. Journal of Digital Imaging, 2007, 20, 196-202.	2.9	6
95	Three-dimensional computer generated breast phantom based on empirical data. Proceedings of SPIE, 2008, , .	0.8	6
96	Third generation anthropomorphic physical phantom for mammography and DBT: incorporating voxelized 3D printing and uniform chest wall QC region. Proceedings of SPIE, 2017, , .	0.8	6
97	Classification of Multiple Diseases on Body CT Scans Using Weakly Supervised Deep Learning. Radiology: Artificial Intelligence, 2022, 4, e210026.	5.8	6
98	Noise power spectrum analysis for several digital breast tomosynthesis reconstruction algorithms. , 2006, , .		5
99	Initial human subject results for breast bi-plane correlation imaging technique. , 2007, , .		5
100	Development of a dynamic 4D anthropomorphic breast phantom for contrast-based breast imaging. Proceedings of SPIE, 2012, , .	0.8	5
101	Does Breast Imaging Experience During ResidencyÂTranslate Into Improved Initial Performance in Digital Breast Tomosynthesis?. Journal of the American College of Radiology, 2015, 12, 728-732.	1.8	5
102	Multimodal Patient-Specific Registration for Breast Imaging Using Biomechanical Modeling with Reference to AI Evaluation of Breast Tumor Change. Life, 2021, 11, 747.	2.4	5
103	Classification of chest CT using case-level weak supervision. , 2019, , .		5
104	Predictive model for the diagnosis of intraabdominal abscess. Academic Radiology, 1998, 5, 473-479.	2.5	4
105	Rotating slat collimator design for high-energy near-field imaging. , 2006, 6142, 405.		4
106	Efficient restoration and enhancement of super-resolved X-ray images. , 2008, , .		4
107	Computer-aided detection of breast masses in tomosynthesis reconstructed volumes using information-theoretic similarity measures. , 2008, , .		4
108	Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis. , 2012, , .		4

JOSEPH Y LO

#	Article	IF	CITATIONS
109	Development of matched virtual and physical breast phantoms based on patient data. , 2013, , .		4
110	Predicting Upstaging of DCIS to Invasive Disease: Radiologists's Predictive Performance. Academic Radiology, 2020, 27, 1580-1585.	2.5	4
111	A new method to accurately identify single nucleotide variants using small FFPE breast samples. Briefings in Bioinformatics, 2021, 22, .	6.5	4
112	Attention-guided classification of abnormalities in semi-structured computed tomography reports. , 2020, , .		4
113	Multi-label annotation of text reports from computed tomography of the chest, abdomen, and pelvis using deep learning. BMC Medical Informatics and Decision Making, 2022, 22, 102.	3.0	4
114	An artificial neural network for estimating scatter exposures in portable chest radiography. Medical Physics, 1993, 20, 965-973.	3.0	3
115	<title>Computer-aided diagnosis of mammography using an artificial neural network: predicting the invasiveness of breast cancers from image features</title> . , 1996, , .		3
116	Breast cancer classification improvements using a new kernel function with evolutionary-programming-configured support vector machines. , 2004, 5370, 880.		3
117	Detector evaluation of a prototype amorphous selenium-based full field digital mammography system. , 2005, , .		3
118	Breast cancer diagnosis using neutron stimulated emission computed tomography: dose and count requirements. , 2006, , .		3
119	Breast mass detection in tomosynthesis projection images using information-theoretic similarity measures. , 2007, , .		3
120	Decision Fusion of Circulating Markers for Breast Cancer Detection in Premenopausal Women. , 2007, , .		3
121	Toward quantification of breast tomosynthesis imaging. Proceedings of SPIE, 2008, , .	0.8	3
122	Towards Optimized Acquisition Scheme for Multiprojection Correlation Imaging of Breast Cancer. Academic Radiology, 2009, 16, 456-463.	2.5	3
123	Validation of a 3D hidden-Markov model for breast tissue segmentation and density estimation from MR and tomosynthesis images. , 2011, , .		3
124	Comparison of model and human observer performance in FFDM, DBT, and synthetic mammography. Proceedings of SPIE, 2016, , .	0.8	3
125	Impact of Using Uniform Attenuation Coefficients for Heterogeneously Dense Breasts in a Dedicated Breast PET/X-Ray Scanner. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4, 585-593.	3.7	3
126	Lesion detectability in stereoscopically viewed digital breast tomosynthesis projection images: a model observer study with anthropomorphic computational breast phantoms. Proceedings of SPIE, 2017, , .	0.8	3

#	Article	IF	CITATIONS
127	Methodology for the objective assessment of lesion detection performance with breast tomosynthesis and digital mammography using a physical anthropomorphic phantom. , 2018, , .		3
128	<title>Evolutionary programming technique for reducing complexity of artifical neural networks for breast cancer diagnosis</title> ., 2000, 3979, 153.		2
129	Application of support vector machines to breast cancer screening using mammogram and history data. , 2002, , .		2
130	Issues in assessing multi-institutional performance of BI-RADS-based CAD systems. , 2005, , .		2
131	Beam Optimization for Digital Mammography – II. Lecture Notes in Computer Science, 2006, , 273-280.	1.3	2
132	Mass detection in mammographic ROIs using Watson filters. , 2006, , .		2
133	Impulse response and Modulation Transfer Function analysis for Shift-And-Add and Back Projection image reconstruction algorithms in Digital Breast Tomosynthesis (DBT). International Journal of Functional Informatics and Personalised Medicine, 2008, 1, 189.	0.4	2
134	Computerized 3D breast phantom with enhanced high-resolution detail. Proceedings of SPIE, 2009, , .	0.8	2
135	A second generation of physical anthropomorphic 3D breast phantoms based on human subject data. Proceedings of SPIE, 2014, , .	0.8	2
136	Radiology Trainee Performance in Digital BreastÂTomosynthesis: Relationship Between Difficulty and Error-Making Patterns. Journal of the American College of Radiology, 2016, 13, 198-202.	1.8	2
137	Knowledge Transfer across Breast Cancer Screening Modalities: A Pilot Study Using an Information-Theoretic CADe System for Mass Detection. Lecture Notes in Computer Science, 2008, , 292-298.	1.3	2
138	Multi-projection Correlation Imaging as a New Diagnostic Tool for Improved Breast Cancer Detection. Lecture Notes in Computer Science, 2008, , 635-642.	1.3	2
139	Virtual assessment of stereoscopic viewing of digital breast tomosynthesis projection images. Journal of Medical Imaging, 2018, 5, 1.	1.5	2
140	3D printed anthropomorphic physical phantom for mammography and DBT with high contrast custom materials, lesions and uniform chest wall region. , 2018, , .		2
141	Method for task-based evaluation of clinical FFDM and DBT systems using an anthropomorphic breast phantom. , 2018, , .		2
142	Evaluation of statistical breast phantoms with higher resolution. , 2018, , .		2
143	<title>Application of adaptive boosting to EP-derived multilayer feed-forward neural networks
(MLFN) to improve benign/malignant breast cancer classification</title> ., 2001, 4322, 1717.		1
144	Improving the predictive value of mammography using a specialized evolutionary programming hybrid		1

and fitness functions., 2003,,.

#	Article	IF	CITATIONS
145	The effect of data set size on computer-aided diagnosis of breast cancer: comparing decision fusion to a linear discriminant. , 2006, , .		1
146	Feasibility study of breast tomosynthesis CAD system. , 2007, , .		1
147	On the development of a Gaussian noise model for scatter compensation. , 2007, , .		1
148	Visual image quality metrics for optimization of breast tomosynthesis acquisition technique. , 2007, , .		1
149	User modeling for improved computer-aided training in radiology: initial experience. , 2010, , .		1
150	3D biopsy for tomosynthesis: simulation of prior information based reconstruction for dose and artifact reduction. , 2012, , .		1
151	A task-based comparison of two reconstruction algorithms for digital breast tomosynthesis. , 2014, , .		1
152	Modeling resident error-making patterns in detection of mammographic masses using computer-extracted image features: preliminary experiments. Proceedings of SPIE, 2014, , .	0.8	1
153	Incorporating breast tomosynthesis into radiology residency: Does trainee experience in breast imaging translate into improved performance with this new modality?. , 2015, , .		1
154	Eigenbreasts for statistical breast phantoms. Proceedings of SPIE, 2016, , .	0.8	1
155	Detectability of artificial lesions in anthropomorphic virtual breast phantoms of variable glandular fraction. Proceedings of SPIE, 2017, , .	0.8	1
156	Improving classification with forced labeling of other related classes: application to prediction of upstaged ductal carcinoma in situ using mammographic features. , 2018, , .		1
157	Technical Note: Controlling the attenuation of 3Dâ€printed physical phantoms for computed tomography with a single material. Medical Physics, 2022, , .	3.0	1
158	Co-occurring diseases heavily influence the performance of weakly supervised learning models for classification of chest CT. , 2022, , .		1
159	Interpretable deep learning models for better clinician-Al communication in clinical mammography. , 2022, , .		1
160	<title>Academic consortium for the evaluation of computer-aided diagnosis (CADx) in mammography</title> . , 1995, 2431, 442.		0
161	<title>Application of a GRNN oracle to the intelligent combination of several breast cancer benign/malignant predictive paradigms</title> . , 2000, 3979, 77.		0
162	Prediction of breast biopsy outcome using a likelihood ratio classifier and biopsy cases from two medical centers. , 2003, 5032, 1386.		0

#	Article	IF	CITATIONS
163	Validation of a constraint satisfaction neural network for breast cancer disgnosis: new results from 1030 cases. , 2003, 5032, 207.		0
164	New results in computer-aided diagnosis (CAD) of breast cancer using a recently developed SVM/GRNN Oracle hybrid. , 2004, , .		0
165	Characterization of scatter radiation of a breast phantom on Siemens prototype FFDM with and without an anti-scatter grid. , 2005, , .		0
166	A comparison between traditional shift-and-add (SAA) and point-by-point back projection (BP) relevance to morphology of microcalcifications for isocentric motion in Digital Breast tomosynthesis (DBT). , 2007, , .		0
167	Optimized acquisition scheme for multi-projection correlation imaging of breast cancer. Proceedings of SPIE, 2008, , .	0.8	0
168	Mass detectability in dedicated breast CT: A simulation study with the application of volume noise removal. , 2008, , .		0
169	Optimized lesion detection in digital breast tomosynthesis. , 2009, , .		0
170	Segmentation of adipose and glandular tissue for breast tomosynthesis imaging using a 3D hidden-Markov model trained on breast MRIs. Proceedings of SPIE, 2011, , .	0.8	0
171	Estimating breast density with dual energy mammography: a simple model based on calibration phantoms. , 2013, , .		Ο
172	Tri-plane correlation imaging for the detection of breast cancer: Effects of angular separation and correlation rule. International Journal of Diagnostic Imaging, 2015, 2, .	0.1	0
173	The impact of breast structure on lesion detection in breast tomosynthesis. Proceedings of SPIE, 2015, , .	0.8	0
174	A quantitative metrology for performance characterization of breast tomosynthesis systems based on an anthropomorphic phantom. , 2015, , .		0
175	Application of a Dynamic 4D Anthropomorphic Breast Phantom in Contrast-Based Imaging System Optimization: Dual-Energy or Temporal Subtraction?. Lecture Notes in Computer Science, 2012, , 658-665.	1.3	Ο
176	Identification of error making patterns in lesion detection on digital breast tomosynthesis using computer-extracted image features. , 2016, , .		0
177	Effect of Similarity Metrics and ROI Sizes in Featureless Computer Aided Detection of Breast Masses in Tomosynthesis. Lecture Notes in Computer Science, 2008, , 286-291.	1.3	Ο
178	Assessment of Low Energies and Slice Depth in the Quantification of Breast Tomosynthesis. Lecture Notes in Computer Science, 2008, , 530-536.	1.3	0
179	Corrections to " <i>i</i> Phantom: A Framework for Automated Creation of Individualized Computational Phantoms and its Application to CT Organ Dosimetry―[Aug 21 3061-3072]. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 478-478.	6.3	0
180	Virtual versus reality: external validation of COVID-19 classifiers using XCAT phantoms for chest computed tomography. , 2022, , .		0

#	Article	IF	CITATIONS
181	Quality or quantity: toward a unified approach for multi-organ segmentation in body CT. , 2022, , .		0