List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6959774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	3.9	2,997
2	Global diversity and geography of soil fungi. Science, 2014, 346, 1256688.	12.6	2,513
3	Structure and function of the global topsoil microbiome. Nature, 2018, 560, 233-237.	27.8	1,370
4	Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 2019, 17, 95-109.	28.6	580
5	454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 2010, 188, 291-301.	7.3	484
6	How mycorrhizal associations drive plant population and community biology. Science, 2020, 367, .	12.6	453
7	High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity, 2018, 90, 135-159.	12.3	450
8	Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys, 0, 10, 1-43.	1.9	409
9	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	12.3	387
10	Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular Ecology, 2012, 21, 4160-4170.	3.9	365
11	Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME Journal, 2016, 10, 346-362.	9.8	307
12	Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytologist, 2012, 193, 465-473.	7.3	256
13	Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME Journal, 2016, 10, 885-896.	9.8	256
14	Localâ€scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytologist, 2015, 205, 1454-1463.	7.3	197
15	Biogeography of ectomycorrhizal fungi associated with alders (<i><scp>A</scp>lnus</i> spp.) in relation to biotic and abiotic variables at the global scale. New Phytologist, 2013, 198, 1239-1249.	7.3	191
16	Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews, 2019, 94, 1857-1880.	10.4	178
17	Fine root foraging strategies in <scp>N</scp> orway spruce forests across a <scp>E</scp> uropean climate gradient. Global Change Biology, 2011, 17, 3620-3632.	9.5	161
18	Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiology Reviews, 2016, 40, 686-700.	8.6	159

#	Article	IF	CITATIONS
19	Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome, 2017, 5, 42.	11.1	152
20	Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytologist, 2013, 199, 822-831.	7.3	151
21	Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Frontiers in Microbiology, 2020, 11, 1953.	3.5	126
22	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
23	The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 2013, 101, 1335-1344.	4.0	124
24	Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 2014, 67, 11-19.	12.3	123
25	Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytologist, 2012, 195, 832-843.	7.3	119
26	PipeCraft: Flexible openâ€source toolkit for bioinformatics analysis of custom highâ€ŧhroughput amplicon sequencing data. Molecular Ecology Resources, 2017, 17, e234-e240.	4.8	116
27	A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiology Ecology, 2011, 75, 313-320.	2.7	115
28	Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar. Molecular Ecology, 2011, 20, 3071-3080.	3.9	108
29	Host preference and network properties in biotrophic plant–fungal associations. New Phytologist, 2018, 217, 1230-1239.	7.3	107
30	Global mismatches in aboveground and belowground biodiversity. Conservation Biology, 2019, 33, 1187-1192.	4.7	103
31	Plant nutrientâ€acquisition strategies drive topsoil microbiome structure and function. New Phytologist, 2020, 227, 1189-1199.	7.3	96
32	Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environmental Microbiology Reports, 2019, 11, 487-494.	2.4	91
33	Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment. Environmental Pollution, 2021, 274, 116569.	7.5	91
34	Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME Journal, 2021, 15, 1108-1120.	9.8	87
35	Best practices in metabarcoding of fungi: From experimental design to results. Molecular Ecology, 2022, 31, 2769-2795.	3.9	87
36	Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology, 2013, 6, 256-268.	1.6	81

#	Article	IF	CITATIONS
37	Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Molecular Ecology, 2017, 26, 4846-4858.	3.9	80
38	Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza, 2011, 21, 403-412.	2.8	78
39	Network perspectives of ectomycorrhizal associations. Fungal Ecology, 2014, 7, 70-77.	1.6	77
40	Antibiotics-induced monodominance of a novel gut bacterial order. Gut, 2019, 68, 1781-1790.	12.1	73
41	Top 50 most wanted fungi. MycoKeys, 0, 12, 29-40.	1.9	72
42	Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications, 2022, 13, 1430.	12.8	72
43	Relative Performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in Identification of Agricultural and Forest Fungal Pathogens. Applied and Environmental Microbiology, 2019, 85, .	3.1	68
44	Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host and Microbe, 2021, 29, 1167-1176.e9.	11.0	66
45	Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza, 2013, 23, 11-19.	2.8	63
46	Bacterial Communities in Boreal Forest Mushrooms Are Shaped Both by Soil Parameters and Host Identity. Frontiers in Microbiology, 2017, 8, 836.	3.5	62
47	Global biogeography of the ectomycorrhizal /sebacina lineage (<scp>F</scp> ungi,) Tj ETQq1 1 0.784314 rgBT /O 2014, 23, 4168-4183.	verlock 10 3.9) Tf 50 347 T 58
48	Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. MycoKeys, 2018, 39, 29-40.	1.9	52
49	Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms. Ecology Letters, 2015, 18, 96-107.	6.4	48
50	Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem. Mycorrhiza, 2018, 28, 39-47.	2.8	48
51	Identifying the â€~unidentified' fungi: a global-scale long-read third-generation sequencing approach. Fungal Diversity, 2020, 103, 273-293.	12.3	48
52	A global overview of the trophic structure within microbiomes across ecosystems. Environment International, 2021, 151, 106438.	10.0	48
53	Seasonal and annual variation in fungal communities associated with epigeic springtails (Collembola) Tj ETQq1 1	0.784314	rgBT /Overlo
54	Towards revealing the global diversity and community assembly of soil eukaryotes. Ecology Letters, 2022, 25, 65-76.	6.4	47

#	Article	IF	CITATIONS
55	Fungi as mediators linking organisms and ecosystems. FEMS Microbiology Reviews, 2022, 46, .	8.6	47
56	Response to Comment on "Global diversity and geography of soil fungi― Science, 2015, 349, 936-936.	12.6	43
57	Does host plant richness explain diversity of ectomycorrhizal fungi? Reâ€evaluation of Gao <i>etÂal</i> . (2013) data sets reveals sampling effects. Molecular Ecology, 2014, 23, 992-995.	3.9	42
58	Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and high-throughput sequencing. Soil Biology and Biochemistry, 2016, 96, 152-159.	8.8	42
59	Metagenomic assessment of the global diversity and distribution of bacteria and fungi. Environmental Microbiology, 2021, 23, 316-326.	3.8	42
60	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	12.3	42
61	Global biogeography of <i>Alnus</i> â€associated <i>Frankia</i> actinobacteria. New Phytologist, 2014, 204, 979-988.	7.3	41
62	Temporal variation of <i>Bistorta vivipara</i> â€associated ectomycorrhizal fungal communities in the High Arctic. Molecular Ecology, 2015, 24, 6289-6302.	3.9	39
63	Cropping systems with higher organic carbon promote soil microbial diversity. Agriculture, Ecosystems and Environment, 2021, 319, 107521.	5.3	33
64	Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Molecular Ecology, 2015, 24, 1831-1843.	3.9	31
65	Ectomycorrhizal and saprotrophic fungi respond differently to longâ€ŧerm experimentally increased snow depth in the High Arctic. MicrobiologyOpen, 2016, 5, 856-869.	3.0	30
66	The role of arbuscular mycorrhizal fungi in plant invasion trajectory. Plant and Soil, 2019, 441, 1-14.	3.7	30
67	Host genetic variation strongly influences the microbiome structure and function in fungal fruitingâ€bodies. Environmental Microbiology, 2018, 20, 1641-1650.	3.8	23
68	Carbon content and pH as important drivers of fungal community structure in three Amazon forests. Plant and Soil, 2020, 450, 111-131.	3.7	23
69	Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. Mycorrhiza, 2017, 27, 355-367.	2.8	21
70	Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups. ISME Journal, 2020, 14, 2131-2141.	9.8	20
71	Host tree organ is the primary driver of endophytic fungal community structure in a hemiboreal forest. FEMS Microbiology Ecology, 2020, 96, .	2.7	19
72	Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic and Applied Ecology, 2021, 50, 25-42.	2.7	19

#	Article	IF	CITATIONS
73	Global soil microbiomes: A new frontline of biomeâ€ecology research. Global Ecology and Biogeography, 2022, 31, 1120-1132.	5.8	19
74	Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia). Microbiological Research, 2021, 250, 126788.	5.3	18
75	Alpine bistort (Bistorta vivipara) in edge habitat associates with fewer but distinct ectomycorrhizal fungal species: a comparative study of three contrasting soil environments in Svalbard. Mycorrhiza, 2016, 26, 809-818.	2.8	17
76	The genome and microbiome of a dikaryotic fungus (<i>Inocybe terrigena</i> , Inocybaceae) revealed by metagenomics. Environmental Microbiology Reports, 2018, 10, 155-166.	2.4	17
77	Bacterial community dynamics across developmental stages of fungal fruiting bodies. FEMS Microbiology Ecology, 2020, 96, .	2.7	17
78	Long―and shortâ€read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities. Molecular Ecology Resources, 2021, 21, 1833-1849.	4.8	16
79	Complex effects of mammalian grazing on extramatrical mycelial biomass in the Scandes forestâ€ŧundra ecotone. Ecology and Evolution, 2018, 8, 1019-1030.	1.9	13
80	Global diversity and distribution of mushroomâ€inhabiting bacteria. Environmental Microbiology Reports, 2022, 14, 254-264.	2.4	13
81	Host diversity and trophic status as determinants of species richness and community composition of fungus gnats. Basic and Applied Ecology, 2015, 16, 46-53.	2.7	12
82	Lack of association between Fusarium graminearum resistance in spike and crude extract tolerance in seedling of wheat. European Journal of Plant Pathology, 2016, 144, 525-538.	1.7	12
83	Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. Journal of Fungi (Basel, Switzerland), 2021, 7, 703.	3.5	12
84	Seasonal dynamics of mycoplankton in the Yellow Sea reflect the combined effect of riverine inputs and hydrographic conditions. Molecular Ecology, 2021, 30, 3624-3637.	3.9	11
85	Biogeography and Specificity of Ectomycorrhizal Fungi of Coccoloba uvifera. Ecological Studies, 2017, , 345-359.	1.2	11
86	Plant-microbe interactions in response to grassland herbivory and nitrogen eutrophication. Soil Biology and Biochemistry, 2021, 156, 108208.	8.8	9
87	Physiological and molecular responses of resistant and susceptible wheat cultivars to <i>Fusarium graminearum</i> mycotoxin extract. Canadian Journal of Plant Pathology, 2017, 39, 444-453.	1.4	7
88	Vertical stratification of microbial communities in woody plants. Phytobiomes Journal, 0, , .	2.7	6
89	Elevation, space and host plant species structure Ericaceae root-associated fungal communities in Papua New Guinea. Fungal Ecology, 2017, 30, 112-121.	1.6	5
90	Global patterns and determinants of bacterial communities associated with ectomycorrhizal root tips of Alnus species. Soil Biology and Biochemistry, 2020, 148, 107923.	8.8	5

#	Article	IF	CITATIONS
91	Designing PCR Primers for the Amplification-Refractory Mutation System. Methods in Molecular Biology, 2022, 2392, 93-99.	0.9	4
92	Revision of the genus <i>Restingomyces</i> , including two new species from Mexico. Mycologia, 2021, 113, 1-11.	1.9	1
93	<p>A new Stephanospora (Agaricales, Basidiomycota) from the Yucatan peninsula, Mexico</p> . Phytotaxa, 2020, 436, 63-71.	0.3	1