Sannula Kesavardhana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6958576/publications.pdf

Version: 2024-02-01

24 papers 3,007 citations

16 h-index 642732 23 g-index

25 all docs

25 docs citations

25 times ranked

2993 citing authors

#	Article	IF	CITATIONS
1	Caspases in Cell Death, Inflammation, and Pyroptosis. Annual Review of Immunology, 2020, 38, 567-595.	21.8	470
2	ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology, 2016, 1 , .	11.9	464
3	DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature, 2019, 573, 590-594.	27.8	262
4	IRGB10 Liberates Bacterial Ligands for Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes. Cell, 2016, 167, 382-396.e17.	28.9	237
5	Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 2020, 10, 237.	3.9	235
6	ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis). Frontiers in Cellular and Infection Microbiology, 2019, 9, 406.	3.9	231
7	Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity–independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. Journal of Experimental Medicine, 2020, 217, .	8.5	178
8	Mechanisms governing inflammasome activation, assembly and pyroptosis induction. International Immunology, 2017, 29, 201-210.	4.0	174
9	NLRC3 is an inhibitory sensor of PI3K–mTOR pathways in cancer. Nature, 2016, 540, 583-587.	27.8	160
10	ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. Journal of Experimental Medicine, 2017, 214, 2217-2229.	8.5	126
11	The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. Journal of Biological Chemistry, 2020, 295, 8325-8330.	3.4	99
12	ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). Journal of Biological Chemistry, 2020, 295, 18276-18283.	3.4	94
13	RIPK1 Distinctly Regulates <i>Yersinia</i> Induced Inflammatory Cell Death, PANoptosis. ImmunoHorizons, 2020, 4, 789-796.	1.8	69
14	Stabilizing the Native Trimer of HIV-1 Env by Destabilizing the Heterodimeric Interface of the gp41 Postfusion Six-Helix Bundle. Journal of Virology, 2014, 88, 9590-9604.	3.4	42
15	DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response. Journal of Biological Chemistry, 2021, 296, 100579.	3.4	35
16	Glycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity. Journal of Biological Chemistry, 2017, 292, 10197-10219.	3.4	29
17	ZBP1: A STARGá ² TE to decode the biology of Z-nucleic acids in disease. Journal of Experimental Medicine, 2020, 217, .	8.5	20
18	Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies. Journal of Biological Chemistry, 2017, 292, 278-291.	3.4	18

#	Article	IF	CITATIONS
19	Emerging Role of ZBP1 in Z-RNA Sensing, Influenza Virus-Induced Cell Death, and Pulmonary Inflammation. MBio, 2022, 13, e0040122.	4.1	18
20	Stressed-out ROS take a silent death route. Nature Immunology, 2018, 19, 103-105.	14.5	14
21	Cutting Edge: Caspase-8 Is a Linchpin in Caspase-3 and Gasdermin D Activation to Control Cell Death, Cytokine Release, and Host Defense during Influenza A Virus Infection. Journal of Immunology, 2021, 207, 2411-2416.	0.8	14
22	Inflammasome regulation in driving COVIDâ€19 severity in humans and immune tolerance in bats. Journal of Leukocyte Biology, 2021, , .	3.3	11
23	Targeting Apoptosis Inhibition to Activate Antitumor Immunity. Trends in Immunology, 2019, 40, 1073-1075.	6.8	6
24	Dysregulated innate immune and inflammatory responses in SARS-CoV-2 infection and COVID-19 severity. Critical Reviews in Immunology, 2021, 41, 43-56.	0.5	1