Julia A Horsfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6958524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development (Cambridge), 2002, 129, 2015-2030.	2.5	257
2	RAD21 Mutations Cause a Human Cohesinopathy. American Journal of Human Genetics, 2012, 90, 1014-1027.	6.2	238
3	Cohesin-dependent regulation of Runx genes. Development (Cambridge), 2007, 134, 2639-2649.	2.5	178
4	Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development (Cambridge), 2002, 129, 2015-30.	2.5	109
5	Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved. Developmental Biology, 2010, 344, 637-649.	2.0	101
6	Diverse Developmental Disorders from The One Ring: Distinct Molecular Pathways Underlie the Cohesinopathies. Frontiers in Genetics, 2012, 3, 171.	2.3	89
7	Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochemistry and Cell Biology, 1995, 73, 1095-1103.	2.0	76
8	Long distance relationships: Enhancer–promoter communication and dynamic gene transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 1217-1227.	1.9	75
9	Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing. Epigenetics, 2013, 8, 979-989.	2.7	67
10	Prokaryotic ribosomes recode the HIV-1gag-pol-1 frameshift sequence by an E/P site post-translocation simultaneous slippage mechanism. Nucleic Acids Research, 1995, 23, 1487-1494.	14.5	64
11	A Zebrafish Model of Roberts Syndrome Reveals That Esco2 Depletion Interferes with Development by Disrupting the Cell Cycle. PLoS ONE, 2011, 6, e20051.	2.5	63
12	Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development. Mechanisms of Development, 2002, 115, 15-26.	1.7	58
13	Cohesin mutations in myeloid malignancies: underlying mechanisms. Experimental Hematology and Oncology, 2014, 3, 13.	5.0	54
14	Runx3 is required for hematopoietic development in zebrafish. Developmental Dynamics, 2003, 228, 323-336.	1.8	53
15	Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development. BMC Genomics, 2017, 18, 557.	2.8	52
16	Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 50-61.	1.9	47
17	Cohesin facilitates zygotic genome activation in zebrafish. Development (Cambridge), 2018, 145, .	2.5	47
18	A Genetic Screen for Dominant Modifiers of a cyclin E Hypomorphic Mutation Identifies Novel Regulators of S-Phase Entry in Drosophila. Genetics, 2004, 168, 227-251.	2.9	46

JULIA A HORSFIELD

#	Article	IF	CITATIONS
19	HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells. Journal of Biological Chemistry, 2016, 291, 12761-12770.	3.4	44
20	Drosophila cyclin E interacts with components of the Brahma complex. EMBO Journal, 2002, 21, 3377-3389.	7.8	42
21	Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Human Molecular Genetics, 2020, 29, 923-943.	2.9	40
22	Gene Regulation by Cohesin in Cancer: Is the Ring an Unexpected Party to Proliferation?. Molecular Cancer Research, 2011, 9, 1587-1607.	3.4	37
23	Intergenic GWAS SNPs are key components of the spatial and regulatory network for human growth. Human Molecular Genetics, 2016, 25, 3372-3382.	2.9	36
24	Expression of cohesin and condensin genes during zebrafish development supports a non-proliferative role for cohesin. Gene Expression Patterns, 2009, 9, 586-594.	0.8	32
25	Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended â€~male sex drive' hypothesis. Gene, 2016, 590, 307-316.	2.2	30
26	A neural crest origin for cohesinopathy heart defects. Human Molecular Genetics, 2015, 24, ddv402.	2.9	28
27	BET inhibition prevents aberrant RUNX1 and ERG transcription in STAG2 mutant leukaemia cells. Journal of Molecular Cell Biology, 2020, 12, 397-399.	3.3	28
28	A non-coding genetic variant maximally associated with serum urate levels is functionally linked to HNF4A-dependent PDZK1 expression. Human Molecular Genetics, 2018, 27, 3964-3973.	2.9	26
29	Cohesin Is Required for Activation of MYC by Estradiol. PLoS ONE, 2012, 7, e49160.	2.5	25
30	Antioxidant treatment ameliorates phenotypic features of SMC1A-mutated Cornelia de Lange syndrome in vitro and in vivo. Human Molecular Genetics, 2018, 27, 3002-3011.	2.9	24
31	Base-resolution DNA methylation landscape of zebrafish brain and liver. Genomics Data, 2014, 2, 342-344.	1.3	23
32	GWAS on prolonged gestation (post-term birth): analysis of successive Finnish birth cohorts. Journal of Medical Genetics, 2018, 55, 55-63.	3.2	23
33	Cohesin Mutations in Cancer: Emerging Therapeutic Targets. International Journal of Molecular Sciences, 2021, 22, 6788.	4.1	22
34	Cohesin mutations are synthetic lethal with stimulation of WNT signaling. ELife, 2020, 9, .	6.0	22
35	Identification of sex differences in zebrafish (Danio rerio) brains during early sexual differentiation and masculinization using 17α-methyltestoteroneâ€. Biology of Reproduction, 2018, 99, 446-460.	2.7	21
36	In situ hybridization screen in zebrafish for the selection of genes encoding secreted proteins. Developmental Dynamics, 2001, 222, 637-644.	1.8	20

JULIA A HORSFIELD

#	Article	IF	CITATIONS
37	Embryonic oxidative stress results in reproductive impairment for adult zebrafish. Redox Biology, 2015, 6, 648-655.	9.0	19
38	Cohesin modulates transcription of estrogen-responsive genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 257-269.	1.9	18
39	Packaging development: how chromatin controls transcription in zebrafish embryogenesis. Biochemical Society Transactions, 2019, 47, 713-724.	3.4	18
40	Functional Urate-Associated Genetic Variants Influence Expression of lincRNAs LINC01229 and MAFTRR. Frontiers in Genetics, 2018, 9, 733.	2.3	18
41	Dietary Intake Influences Adult Fertility and Offspring Fitness in Zebrafish. PLoS ONE, 2016, 11, e0166394.	2.5	17
42	A non-coding genetic variant associated with abdominal aortic aneurysm alters ERG gene regulation. Human Molecular Genetics, 2020, 29, 554-565.	2.9	16
43	Regulation of the interferon-gamma (IFN-γ) pathway by p63 and Δ133p53 isoform in different breast cancer subtypes. Oncotarget, 2018, 9, 29146-29161.	1.8	16
44	An ovine hepatorenal fibrocystic model of a Meckel-like syndrome associated with dysmorphic primary cilia and TMEM67 mutations. Scientific Reports, 2017, 7, 1601.	3.3	15
45	Full circle: a brief history of cohesin and the regulation of gene expression. FEBS Journal, 2023, 290, 1670-1687.	4.7	15
46	Evidence that cell survival is controlled by interleukin-3 independently of cell proliferation. Journal of Cellular Physiology, 1995, 163, 466-476.	4.1	14
47	SMAD proteins directly suppress <i>PAX2</i> transcription downstream of transforming growth factor-beta 1 (TGF-β1) signalling in renal cell carcinoma. Oncotarget, 2018, 9, 26852-26867.	1.8	14
48	Cohesin Components Stag1 and Stag2 Differentially Influence Haematopoietic Mesoderm Development in Zebrafish Embryos. Frontiers in Cell and Developmental Biology, 2020, 8, 617545.	3.7	10
49	Cornelia de Lange syndrome: Further delineation of phenotype, cohesin biology and educational focus, 5th Biennial Scientific and Educational Symposium abstracts. American Journal of Medical Genetics, Part A, 2014, 164, 1384-1393.	1.2	9
50	A DNA Contact Map for the Mouse Runx1 Gene Identifies Novel Haematopoietic Enhancers. Scientific Reports, 2017, 7, 13347.	3.3	9
51	Leptin regulates glucose homeostasis via the canonical Wnt pathway in the zebrafish. FASEB Journal, 2022, 36, e22207.	0.5	6
52	A variant of the castor zinc finger 1 (CASZ1) gene is differentially associated with the clinical classification of chronic venous disease. Scientific Reports, 2019, 9, 14011.	3.3	5
53	Insights from Space: Potential Role of Diet in the Spatial Organization of Chromosomes. Nutrients, 2014, 6, 5724-5739.	4.1	4
54	Transcriptional Regulation of RUNX1: An Informatics Analysis. Genes, 2021, 12, 1175.	2.4	4

JULIA A HORSFIELD

#	Article	IF	CITATIONS
55	Low tolerance for transcriptional variation at cohesin genes is accompanied by functional links to disease-relevant pathways. Journal of Medical Genetics, 2021, 58, 534-542.	3.2	3
56	Chlorogenic Acid Supplementation Benefits Zebrafish Embryos Exposed to Auranofin. Pharmaceutics, 2020, 12, 1199.	4.5	2
57	The three-dimensional genome in zebrafish development. Briefings in Functional Genomics, 2021, , .	2.7	1
58	Investigation of the Use of Impermeable Fluid Barriers between Pelleted and Supernatant Enzyme Activity in a Pseudohomogeneous Enzyme Immunoassay. Annals of Clinical Biochemistry, 1992, 29, 546-550.	1.6	0
59	Abstract 403: Expression of genes spanning a breast cancer susceptibility locus on 6q25.1 is modulated by epigenetic modification. , 2014, , .		0
60	Abstract 4518: 4CSeq analysis of a breast cancer susceptibility locus on 6q25.1. , 2016, , .		0
61	A Runx1 Interactome Identifies Novel Hematopoietic Enhancers. Blood, 2016, 128, 726-726.	1.4	0
62	Targeted Disruption of the Cohesin Subunit STAG2 Leads to Loss of Insulation and Inappropriate Gene Activation in Response to Differentiation Signals. Blood, 2018, 132, 878-878.	1.4	0
63	Riboceine Rescues Auranofin-Induced Craniofacial Defects in Zebrafish. Antioxidants, 2021, 10, 1964.	5.1	0