M Todd Walter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6957738/publications.pdf

Version: 2024-02-01

140 papers 5,356 citations

39 h-index 65 g-index

142 all docs 142 docs citations

times ranked

142

5680 citing authors

#	Article	IF	CITATIONS
1	Reducing adverse impacts of Amazon hydropower expansion. Science, 2022, 375, 753-760.	12.6	60
2	A whole-ecosystem experiment reveals flow-induced shifts in a stream community. Communications Biology, 2022, 5, 420.	4.4	5
3	Critical Review of Polyphosphate and Polyphosphate Accumulating Organisms for Agricultural Water Quality Management. Environmental Science & Eamp; Technology, 2021, 55, 2722-2742.	10.0	21
4	Farmer perceptions of dairy farm antibiotic use and transport pathways as determinants of contaminant loads to the environment. Journal of Environmental Management, 2021, 281, 111880.	7.8	7
5	Dairy farmer perceptions of antibiotic transport and usage in animal agriculture dataset. Data in Brief, 2021, 35, 106785.	1.0	O
6	What You Net Depends on if You Grab: A Meta-analysis of Sampling Method's Impact on Measured Aquatic Microplastic Concentration. Environmental Science & Technology, 2021, 55, 12930-12942.	10.0	6
7	Roadside ditch macroplastic and other litter dataset in the Finger lakes region across land uses and COVID-19 pandemic. Data in Brief, 2021, 38, 107425.	1.0	O
8	Macroplastic accumulation in roadside ditches of New York State's Finger Lakes region (USA) across land uses and the COVID-19 pandemic. Journal of Environmental Management, 2021, 298, 113524.	7.8	10
9	Labile carbon release from oxic–anoxic cycling in woodchip bioreactors enhances nitrate removal without increasing nitrous oxide accumulation. Environmental Science: Water Research and Technology, 2021, 7, 2357-2371.	2.4	6
10	Impacts of Coal Resource Development on Surface Water Quality in a Multiâ€jurisdictional Watershed in the Western United States. Journal of Contemporary Water Research and Education, 2020, 169, 79-91.	0.7	3
11	Hammond Hill Research Catchment: Supporting hydrologic investigations of rooting zone and vegetation water dynamics under climate change. Hydrological Processes, 2020, 34, 4755-4758.	2.6	0
12	Rapid Remote Assessment of Culvert Flooding Risk. Journal of Sustainable Water in the Built Environment, 2020, 6, .	1.6	3
13	Simulation and statistical modelling approaches to investigate hydrologic regime transformations following Eastern hemlock decline. Hydrological Processes, 2020, 34, 1198-1212.	2.6	2
14	Designing Ecoâ€Friendly Water Intake Portfolios in a Tropical Andean Stream Network. Water Resources Research, 2019, 55, 6946-6967.	4.2	7
15	Seasonal and Topographic Variations in Ecohydrological Separation Within a Small, Temperate, Snowâ€Influenced Catchment. Water Resources Research, 2019, 55, 6417-6435.	4.2	32
16	Hudson River juvenile Blueback herring avoid ingesting microplastics. Marine Pollution Bulletin, 2019, 146, 935-939.	5.0	20
17	Tracing Septic Pollution Sources Using Synthetic DNA Tracers: Proof of Concept. Air, Soil and Water Research, 2019, 12, 117862211986379.	2.5	10
18	Compost Quality Recommendations for Remediating Urban Soils. International Journal of Environmental Research and Public Health, 2019, 16, 3191.	2.6	20

#	Article	IF	CITATIONS
19	A case study investigating temporal factors that influence microplastic concentration in streams under different treatment regimes. Environmental Science and Pollution Research, 2019, 26, 21797-21807.	5.3	29
20	Possible Increases in Flood Frequency Due to the Loss of Eastern Hemlock in the Northeastern United States: Observational Insights and Predicted Impacts. Water Resources Research, 2019, 55, 5342-5359.	4.2	23
21	Streamlined ecoâ€engineering approach helps define environmental flows for tropical Andean headwaters. Freshwater Biology, 2019, 64, 1315-1325.	2.4	14
22	Potential Predictability of Regional Precipitation and Discharge Extremes Using Synoptic-Scale Climate Information via Machine Learning: An Evaluation for the Eastern Continental United States. Journal of Hydrometeorology, 2019, 20, 883-900.	1.9	17
23	Characteristics of impervious surface and its effect on direct runoff: a case study in a rapidly urbanized area. Water Science and Technology: Water Supply, 2019, 19, 1885-1891.	2.1	13
24	Seasonal dynamics and exports of elements from a firstâ€order stream to a large inland lake in Michigan. Hydrological Processes, 2019, 33, 1476-1491.	2.6	2
25	Metagenomic analysis reveals distinct patterns of denitrification gene abundance across soil moisture, nitrate gradients. Environmental Microbiology, 2019, 21, 1255-1266.	3.8	49
26	Comparing Watershed Scale P Losses from Manure Spreading in Temperate Climates across Mechanistic Soil P Models. Journal of Hydrologic Engineering - ASCE, 2019, 24, 04019009.	1.9	4
27	The effect of dams on river transport of microplastic pollution. Science of the Total Environment, 2019, 664, 834-840.	8.0	137
28	Particle tracer transport in a sloping soil lysimeter under periodic, steady state conditions. Journal of Hydrology, 2019, 569, 61-76.	5.4	17
29	Denitrifying bioreactor response during storm events. Agricultural Water Management, 2019, 213, 1109-1115.	5.6	19
30	The heavy metal budget of an urban rooftop farm. Science of the Total Environment, 2019, 660, 115-125.	8.0	13
31	Comparing Greenhouse Gas Fluxes from Passive Urban Stormwater Management to Conventional Wastewater Treatment. Journal of Sustainable Water in the Built Environment, 2019, 5, 04018017.	1.6	2
32	Reassessing the relationship between landscape alteration and aquatic ecosystem degradation from a hydrologically sensitive area perspective. Science of the Total Environment, 2019, 650, 2850-2862.	8.0	17
33	Fabrication, detection, and analysis of DNA-labeled PLGA particles for environmental transport studies. Journal of Colloid and Interface Science, 2018, 526, 207-219.	9.4	18
34	Hydrology of the Brooklyn Grange, an urban rooftop farm. Urban Ecosystems, 2018, 21, 673-689.	2.4	20
35	Perennial Grass Bioenergy Cropping on Wet Marginal Land: Impacts on Soil Properties, Soil Organic Carbon, and Biomass During Initial Establishment. Bioenergy Research, 2018, 11, 262-276.	3.9	13
36	Explaining and modeling the concentration and loading of Escherichia coli in a stream—A case study. Science of the Total Environment, 2018, 635, 1426-1435.	8.0	15

#	Article	lF	CITATIONS
37	Release of Escherichia coli under raindrop impact: The role of clay. Advances in Water Resources, 2018, 111, 1-5.	3.8	12
38	Absence of genetic selection in a pathogenic Escherichia coli strain exposed to the manure-amended soil environment. PLoS ONE, 2018, 13, e0208346.	2.5	1
39	Temperature dependence of daily respiration and reaeration rates during baseflow conditions in a northeastern U.S. stream. Journal of Hydrology: Regional Studies, 2018, 19, 250-264.	2.4	5
40	Estimating dominant runoff modes across the conterminous United States. Hydrological Processes, 2018, 32, 3881-3890.	2.6	16
41	Reducing Stormwater Nitrogen with Denitrifying Bioreactors: Florida Case Study. Journal of Sustainable Water in the Built Environment, 2018, 4, 06018002.	1.6	6
42	Effects of urbanization on direct runoff characteristics in urban functional zones. Science of the Total Environment, 2018, 643, 301-311.	8.0	111
43	Plant-Microbe Interactions Drive Denitrification Rates, Dissolved Nitrogen Removal, and the Abundance of Denitrification Genes in Stormwater Control Measures. Environmental Science & Emp; Technology, 2018, 52, 9320-9329.	10.0	57
44	Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area. International Journal of Environmental Research and Public Health, 2018, 15, 775.	2.6	48
45	Methane and nitrous oxide cycling microbial communities in soils above septic leach fields: Abundances with depth and correlations with net surface emissions. Science of the Total Environment, 2018, 640-641, 429-441.	8.0	20
46	Modeling the release of Escherichia coli from soil into overland flow under raindrop impact. Advances in Water Resources, 2017, 106, 144-153.	3.8	11
47	Environmental flows in the context of unconventional natural gas development in the <scp>M</scp> arcellus <scp>S</scp> hale. Ecological Applications, 2017, 27, 37-55.	3.8	19
48	Ecohydrologic considerations for modeling of stable water isotopes in a small intermittent watershed. Hydrological Processes, 2017, 31, 2438-2452.	2.6	42
49	Shortâ€term Forecasting Tools for Agricultural Nutrient Management. Journal of Environmental Quality, 2017, 46, 1257-1269.	2.0	20
50	The Role of Denitrification in Stormwater Detention Basin Treatment of Nitrogen. Environmental Science & Environmental Science	10.0	52
51	Hydrologic State Influence on Riverine Flood Discharge for a Small Temperate Watershed (Fall Creek,) Tj ETQq1 1 2017, 18, 431-449.	0.784314 1.9	rgBT /Over
52	A Vulnerabilityâ€Based, Bottomâ€up Assessment of Future Riverine Flood Risk Using a Modified Peaksâ€Overâ€Threshold Approach and a Physically Based Hydrologic Model. Water Resources Research, 2017, 53, 10043-10064.	4.2	34
53	Comment on "Beyond the <scp>SCSâ€CN</scp> method: A theoretical framework for spatially lumped rainfallâ€runoff response†by <scp>M</scp> . <scp>S.</scp> Bartlett et al Water Resources Research, 2017, 53, 6345-6350.	4.2	33
54	N2O emissions from grain cropping systems: a meta-analysis of the impacts of fertilizer-based and ecologically-based nutrient management strategies. Nutrient Cycling in Agroecosystems, 2017, 107, 335-355.	2.2	75

#	Article	IF	CITATIONS
55	Topographic wetness guided dairy manure applications to reduce stream nutrient loads in Central New York, USA. Journal of Hydrology: Regional Studies, 2017, 14, 67-82.	2.4	9
56	Controls Influencing the Treatment of Excess Agricultural Nitrate with Denitrifying Bioreactors. Journal of Environmental Quality, 2016, 45, 772-778.	2.0	30
57	Nutrient Cycling in Grassed Roadside Ditches and Lawns in a Suburban Watershed. Journal of Environmental Quality, 2016, 45, 1901-1909.	2.0	31
58	Critical rainfall statistics for predicting watershed flood responses: rethinking the design storm concept. Hydrological Processes, 2016, 30, 3788-3803.	2.6	20
59	Influence of transient flooding on methane fluxes from subtropical pastures. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 965-977.	3.0	29
60	Apportionment of bioavailable phosphorus loads entering Cayuga Lake, New York. Journal of the American Water Resources Association, 2016, 52, 31-47.	2.4	21
61	Does Population Affect the Location of Flash Flood Reports?. Journal of Applied Meteorology and Climatology, 2016, 55, 1953-1963.	1.5	9
62	Evaluating weather observations and the Climate Forecast System Reanalysis as inputs for hydrologic modelling in the tropics. Hydrological Processes, 2016, 30, 3466-3477.	2.6	33
63	Roadside soils show low plant available zinc and copper concentrations. Environmental Pollution, 2016, 209, 30-37.	7.5	27
64	Terrestrial pyrogenic carbon export to fluvial ecosystems: Lessons learned from the White Nile watershed of East Africa. Global Biogeochemical Cycles, 2015, 29, 1911-1928.	4.9	27
65	Using concurrent DNA tracer injections to infer glacial flow pathways. Hydrological Processes, 2015, 29, 5257-5274.	2.6	38
66	Assessing the impact of drought and forestry on streamflows in south-eastern Australia using a physically based hydrological model. Environmental Earth Sciences, 2015, 74, 6047-6063.	2.7	38
67	Modeling climate change impacts on the thermal dynamics of polymictic Oneida Lake, New York, United States. Ecological Modelling, 2015, 300, 1-11.	2.5	24
68	Modeling denitrification in a changing climate. Sustainability of Water Quality and Ecology, 2015, 5, 64-76.	2.0	7
69	Modeling denitrification in an agricultural catchment in Central New York. Sustainability of Water Quality and Ecology, 2015, 5, 49-63.	2.0	2
70	Hydrologic and Biogeochemical Drivers of Riparian Denitrification in an Agricultural Watershed. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	24
71	Modeling Potential Water Resource Impacts of Mediterranean Tourism in a Changing Climate. Environmental Modeling and Assessment, 2015, 20, 117-128.	2.2	13
72	Methane Emission in a Specific Riparian-Zone Sediment Decreased with Bioelectrochemical Manipulation and Corresponded to the Microbial Community Dynamics. Frontiers in Microbiology, 2015, 6, 1523.	3.5	12

#	Article	IF	CITATIONS
73	Do Energyâ∈Based <scp>PET</scp> Models Require More Input Data than Temperatureâ∈Based Models? â∈" An Evaluation at Four Humid FluxNet Sites. Journal of the American Water Resources Association, 2014, 50, 497-508.	2.4	20
74	Assessing denitrification from seasonally saturated soils in an agricultural landscape: A farm-scale mass-balance approach. Agriculture, Ecosystems and Environment, 2014, 189, 60-69.	5.3	23
7 5	Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 2014, 28, 5613-5623.	2.6	302
76	Estimating long-term changes in actual evapotranspiration and water storage using a one-parameter model. Journal of Hydrology, 2014, 519, 2312-2317.	5.4	9
77	<scp>SWAT</scp> model: A Multiâ€Operating System, Multiâ€Platform <scp>SWAT</scp> Model Package in R. Journal of the American Water Resources Association, 2014, 50, 1349-1353.	2.4	17
78	Improving risk estimates of runoff producing areas: Formulating variable source areas as a bivariate process. Journal of Environmental Management, 2014, 137, 146-156.	7.8	14
79	Atrazine leaching from biochar-amended soils. Chemosphere, 2014, 95, 346-352.	8.2	87
80	Shallow Groundwater Denitrification in Riparian Zones of a Headwater Agricultural Landscape. Journal of Environmental Quality, 2014, 43, 732-744.	2.0	42
81	Hydrological impact of roadside ditches in an agricultural watershed in Central New York: implications for nonâ€point source pollutant transport. Hydrological Processes, 2013, 27, 2422-2437.	2.6	54
82	Modeling the hydrologic effects of roadside ditch networks on receiving waters. Journal of Hydrology, 2013, 486, 293-305.	5.4	32
83	Stream water nutrient and organic carbon exports from tropical headwater catchments at a soil degradation gradient. Nutrient Cycling in Agroecosystems, 2013, 95, 145-158.	2.2	22
84	Roadside ditches as conduits of fecal indicator organisms and sediment: Implications for water quality management. Journal of Environmental Management, 2013, 128, 1050-1059.	7.8	29
85	A phosphorus index that combines critical source areas and transport pathways using a travel time approach. Journal of Hydrology, 2013, 486, 123-135.	5.4	57
86	Comment on †Shaw SB, Riha S. 2011. Assessing temperatureâ€based PET equations under a changing climate in temperate, deciduous forests. <i>Hydrological Processes</i> Processes, 2013, 27, 3511-3515.	2.6	4
87	Real-Time Forecast of Hydrologically Sensitive Areas in the Salmon Creek Watershed, New York State, Using an Online Prediction Tool. Water (Switzerland), 2013, 5, 917-944.	2.7	9
88	Simple Model of Changes in Stream Chloride Levels Attributable to Road Salt Applications. Journal of Environmental Engineering, ASCE, 2012, 138, 112-118.	1.4	21
89	Stream Discharge in Tropical Headwater Catchments as a Result of Forest Clearing and Soil Degradation. Earth Interactions, 2012, 16, 1-18.	1.5	48
90	A Simple Processâ€Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model ¹ . Journal of the American Water Resources Association, 2012, 48, 1151-1161.	2.4	21

#	Article	IF	Citations
91	Hydrological Tracers Using Nanobiotechnology: Proof of Concept. Environmental Science & Emp; Technology, 2012, 46, 8928-8936.	10.0	44
92	Field Test of the Variable Source Area Interpretation of the Curve Number Rainfall-Runoff Equation. Journal of Irrigation and Drainage Engineering - ASCE, 2012, 138, 235-244.	1.0	17
93	Landscape Scale Variation in Nitrous Oxide Flux Along a Typical Northeastern US Topographic Gradient in the Early Summer. Water, Air, and Soil Pollution, 2012, 223, 1571-1580.	2.4	10
94	Incorporating Variable Source Area Hydrology into a Spatially Distributed Direct Runoff Model ¹ . Journal of the American Water Resources Association, 2012, 48, 43-60.	2.4	18
95	Dissecting the variable source area concept – Subsurface flow pathways and water mixing processes in a hillslope. Journal of Hydrology, 2012, 420-421, 125-141.	5.4	60
96	A simple concept for calibrating runoff thresholds in quasiâ€distributed variable source area watershed models. Hydrological Processes, 2011, 25, 3131-3143.	2.6	22
97	Relating hydrogeomorphic properties to stream buffering chemistry in the Neversink River watershed, New York State, USA. Hydrological Processes, 2010, 24, 3759-3771.	2.6	11
98	A Simple Metric to Predict Stream Water Quality from Storm Runoff in an Urban Watershed. Journal of Environmental Quality, 2010, 39, 1338-1348.	2.0	1
99	Including Source-Specific Phosphorus Mobility in a Nonpoint Source Pollution Model for Agricultural Watersheds. Journal of Environmental Engineering, ASCE, 2009, 135, 25-35.	1.4	14
100	New Paradigm for Sizing Riparian Buffers to Reduce Risks of Polluted Storm Water: Practical Synthesis. Journal of Irrigation and Drainage Engineering - ASCE, 2009, 135, 200-209.	1.0	26
101	Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwaters of the Upper Susquehanna River. Biogeochemistry, 2009, 93, 197-218.	3.5	70
102	Improving runoff risk estimates: Formulating runoff as a bivariate process using the SCS curve number method. Water Resources Research, 2009, 45, .	4.2	32
103	Ecosystem impacts of disturbance in a dry tropical forest in southern India. Ecohydrology, 2008, 1, 149-160.	2.4	20
104	Impacts of disturbance on soil properties in a dry tropical forest in Southern India. Ecohydrology, 2008, 1, 161-175.	2.4	27
105	Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology, 2008, 348, 279-291.	5.4	239
106	Investigating a high resolution, stream chloride time series from the Biscuit Brook catchment, Catskills, NY. Journal of Hydrology, 2008, 348, 245-256.	5.4	38
107	Pore-Scale Quantification of Colloid Transport in Saturated Porous Media. Environmental Science & Environmental Science	10.0	30
108	Combined Monitoring and Modeling Indicate the Most Effective Agricultural Best Management Practices. Journal of Environmental Quality, 2008, 37, 1798-1809.	2.0	51

#	Article	IF	CITATIONS
109	Reduced raindrop-impact driven soil erosion by infiltration. Journal of Hydrology, 2007, 342, 331-335.	5.4	40
110	Modeling soil solute release into runoff with infiltration. Journal of Hydrology, 2007, 347, 430-437.	5. 4	55
111	Hydrologic assessment of an urban variable source watershed in the northeast United States. Water Resources Research, 2007, 43, .	4.2	57
112	Identifying dissolved phosphorus source areas and predicting transport from an urban watershed using distributed hydrologic modeling. Water Resources Research, 2007, 43, .	4.2	25
113	Incorporating variable source area hydrology into a curveâ€numberâ€based watershed model. Hydrological Processes, 2007, 21, 3420-3430.	2.6	148
114	Vadose zone dynamics and the legacy of Wilford R. Gardner. Transport in Porous Media, 2007, 68, 1-4.	2.6	1
115	Internet mapping tools make scientific applications easy. Eos, 2006, 87, 386.	0.1	3
116	A physical model of particulate wash-off from rough impervious surfaces. Journal of Hydrology, 2006, 327, 618-626.	5.4	45
117	THE IMPACT OF RUNOFF GENERATION MECHANISMS ON THE LOCATION OF CRITICAL SOURCE AREAS. Journal of the American Water Resources Association, 2006, 42, 793-804.	2.4	43
118	Defining probability of saturation with indicator kriging on hard and soft data. Advances in Water Resources, 2006, 29, 181-193.	3.8	47
119	Enhancement of seepage and lateral preferential flow by biopores on hillslopes. Biologia (Poland), 2006, 61, S225-S228.	1.5	22
120	Identifying hydrologically sensitive areas: Bridging the gap between science and application. Journal of Environmental Management, 2006, 78, 63-76.	7.8	115
121	Closure to "Simple Estimation of Prevalence of Hortonian Flow in New York City Watersheds―by M. Todd Walter, Vishal K. Mehta, Alexis M. Marrone, Jan Boll, Pierre G©rard-Marchant, Tammo S. Steenhuis, and Michael F. Walter. Journal of Hydrologic Engineering - ASCE, 2005, 10, 169-170.	1.9	12
122	Closure to "Simple Snowdrift Model for Distributed Hydrological Modeling―by M. Todd Walter, Donald K. McCool, Larry G. King, Myron Molnau, and Gaylon S. Campbell. Journal of Hydrologic Engineering - ASCE, 2005, 10, 524-525.	1.9	0
123	Process-based snowmelt modeling: does it require more input data than temperature-index modeling?. Journal of Hydrology, 2005, 300, 65-75.	5.4	141
124	Investigating raindrop effects on transport of sediment and non-sorbed chemicals from soil to surface runoff. Journal of Hydrology, 2005, 308, 313-320.	5.4	85
125	Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study. Journal of Contaminant Hydrology, 2004, 74, 1-18.	3.3	13
126	Application of SMR to Modeling Watersheds in the Catskill Mountains. Environmental Modeling and Assessment, 2004, 9, 77-89.	2.2	51

#	Article	IF	Citations
127	Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation. Hydrological Processes, 2004, 18, 2757-2771.	2.6	138
128	Rainfall induced chemical transport from soil to runoff: theory and experiments. Journal of Hydrology, 2004, 295, 291-291.	5.4	1
129	Rainfall induced chemical transport from soil to runoff: theory and experiments. Journal of Hydrology, 2004, 295, 291-304.	5.4	108
130	Increasing Evapotranspiration from the Conterminous United States. Journal of Hydrometeorology, 2004, 5, 405-408.	1.9	132
131	A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes, 2003, 17, 2011-2031.	2.6	208
132	Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. Journal of Hydrology, 2003, 279, 57-69.	5.4	99
133	Funneled flow mechanisms in layered soil: field investigations. Journal of Hydrology, 2003, 279, 210-223.	5.4	32
134	Simple Estimation of Prevalence of Hortonian Flow in New York City Watersheds. Journal of Hydrologic Engineering - ASCE, 2003, 8, 214-218.	1.9	63
135	Linking the pacific decadal oscillation to seasonal stream discharge patterns in Southeast Alaska. Journal of Hydrology, 2002, 263, 188-197.	5.4	98
136	Refined conceptualization of TOPMODEL for shallow subsurface flows. Hydrological Processes, 2002, 16, 2041-2046.	2.6	78
137	Modeling Pollutant Release from a Surface Source during Rainfall Runoff. Journal of Environmental Quality, 2001, 30, 151-159.	2.0	11
138	PHOSPHORUS TRANSPORT INTO SUBSURFACE DRAINS BY MACROPORES AFTER MANURE APPLICATIONS: IMPLICATIONS FOR BEST MANURE MANAGEMENT PRACTICES. Soil Science, 2001, 166, 896-909.	0.9	118
139	Title is missing!. Biogeochemistry, 2001, 55, 293-310.	3.5	13
140	A GIS-based variable source area hydrology model. Hydrological Processes, 1999, 13, 805-822.	2.6	179