
Dmitry Terentyev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6955697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca ²⁺ Leak in Chronic Heart Failure. Circulation Research, 2008, 103, 1466-1472.	4.5	315
2	<i>miR-1</i> Overexpression Enhances Ca ²⁺ Release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B561± and Causing CaMKII-Dependent Hyperphosphorylation of RyR2. Circulation Research, 2009, 104, 514-521.	4.5	268
3	Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11759-11764.	7.1	224
4	Luminal Ca2+Controls Termination and Refractory Behavior of Ca2+-Induced Ca2+Release in Cardiac Myocytes. Circulation Research, 2002, 91, 414-420.	4.5	201
5	Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovascular Research, 2007, 77, 245-255.	3.8	201
6	Clinical Phenotype and Functional Characterization of CASQ2 Mutations Associated With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2006, 114, 1012-1019.	1.6	189
7	Abnormal intrastore calcium signaling in chronic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14104-14109.	7.1	182
8	Abnormal Interactions of Calsequestrin With the Ryanodine Receptor Calcium Release Channel Complex Linked to Exercise-Induced Sudden Cardiac Death. Circulation Research, 2006, 98, 1151-1158.	4.5	179
9	Abnormal Calcium Signaling and Sudden Cardiac Death Associated With Mutation of Calsequestrin. Circulation Research, 2004, 94, 471-477.	4.5	158
10	MicroRNA-1 and -133 Increase Arrhythmogenesis in Heart Failure by Dissociating Phosphatase Activity from RyR2 Complex. PLoS ONE, 2011, 6, e28324.	2.5	134
11	Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovascular Research, 2009, 84, 387-395.	3.8	133
12	Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1787-R1797.	1.8	112
13	The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovascular Research, 2011, 90, 493-502.	3.8	109
14	Shortened Ca ²⁺ Signaling Refractoriness Underlies Cellular Arrhythmogenesis in a Postinfarction Model of Sudden Cardiac Death. Circulation Research, 2012, 110, 569-577.	4.5	99
15	Redox modification of ryanodine receptors by mitochondriaâ€derived reactive oxygen species contributes to aberrant Ca ²⁺ handling in ageing rabbit hearts. Journal of Physiology, 2013, 591, 5895-5911.	2.9	97
16	Enhanced Ryanodine Receptor-Mediated Calcium Leak Determines Reduced Sarcoplasmic Reticulum Calcium Content in Chronic Canine Heart Failure. Biophysical Journal, 2007, 93, 4083-4092.	0.5	94
17	Modulation of SR Ca Release by Luminal Ca and Calsequestrin in Cardiac Myocytes: Effects of CASQ2 Mutations Linked to Sudden Cardiac Death. Biophysical Journal, 2008, 95, 2037-2048.	0.5	91
18	Ca handling during excitation–contraction coupling in heart failure. Pflugers Archiv European Journal of Physiology, 2014, 466, 1129-1137.	2.8	80

DMITRY TERENTYEV

#	Article	IF	CITATIONS
19	Protein Phosphatases Decrease Sarcoplasmic Reticulum Calcium Content by Stimulating Calcium Release in Cardiac Myocytes. Journal of Physiology, 2003, 552, 109-118.	2.9	74
20	Triadin Overexpression Stimulates Excitation-Contraction Coupling and Increases Predisposition to Cellular Arrhythmia in Cardiac Myocytes. Circulation Research, 2005, 96, 651-658.	4.5	73
21	Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Basic Research in Cardiology, 2020, 115, 38.	5.9	73
22	Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology. Cardiovascular Research, 2011, 91, 71-79.	3.8	70
23	Chronic heart failure and the substrate for atrial fibrillation. Cardiovascular Research, 2009, 84, 227-236.	3.8	67
24	Hyperphosphorylation of RyRs Underlies Triggered Activity in Transgenic Rabbit Model of LQT2 Syndrome. Circulation Research, 2014, 115, 919-928.	4.5	64
25	Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. International Journal of Molecular Sciences, 2019, 20, 2386.	4.1	60
26	A mutation in calsequestrin, CASQ2D307H, impairs Sarcoplasmic Reticulum Ca2+ handling and causes complex ventricular arrhythmias in mice. Cardiovascular Research, 2007, 75, 69-78.	3.8	52
27	Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes. Journal of Physiology, 2004, 561, 515-524.	2.9	50
28	Cardiac calsequestrin: quest inside the SR. Journal of Physiology, 2009, 587, 3091-3094.	2.9	48
29	Protein-protein interactions between triadin and calsequestrin are involved in modulation of sarcoplasmic reticulum calcium release in cardiac myocytes. Journal of Physiology, 2007, 583, 71-80.	2.9	46
30	SK Channel Enhancers Attenuate Ca ²⁺ -Dependent Arrhythmia in Hypertrophic Hearts by Regulating Mito-ROS-Dependent Oxidation and Activity of RyR Cardiovascular Research, 2017, 113, cvx005.	3.8	45
31	Intraâ€sarcoplasmic reticulum Ca ²⁺ oscillations are driven by dynamic regulation of ryanodine receptor function by luminal Ca ²⁺ in cardiomyocytes. Journal of Physiology, 2009, 587, 4863-4872.	2.9	44
32	Sarcoplasmic reticulum Ca ²⁺ release is both necessary and sufficient for SK channel activation in ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H738-H746.	3.2	43
33	Pharmacological Modulation of Mitochondrial Ca2+ Content Regulates Sarcoplasmic Reticulum Ca2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Frontiers in Physiology, 2018, 9, 1831.	2.8	42
34	Effects of dietary omega–3 fatty acids on ventricular function in dogs with healed myocardial infarctions: in vivo and in vitro studies. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1219-H1228.	3.2	38
35	Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Frontiers in Physiology, 2018, 9, 1517.	2.8	37
36	Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors. Journal of Physiology, 2011, 589, 4697-4708.	2.9	36

DMITRY TERENTYEV

#	Article	lF	CITATIONS
37	Activation of Anoctamin-1 Limits Pulmonary Endothelial Cell Proliferation via p38–Mitogen-activated Protein Kinase–Dependent Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 658-667.	2.9	35
38	Regulation of sarcoplasmic reticulum Ca2+ release by serine-threonine phosphatases in the heart. Journal of Molecular and Cellular Cardiology, 2016, 101, 156-164.	1.9	31
39	Repolarization abnormalities and afterdepolarizations in a canine model of sudden cardiac death. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1463-R1472.	1.8	28
40	Modulation of sarcoplasmic reticulum calcium release by calsequestrin in cardiac myocytes. Biological Research, 2004, 37, 603-7.	3.4	27
41	Synergistic interactions between Ca2+entries through L-type Ca2+channels and Na+-Ca2+exchanger in normal and failing rat heart. Journal of Physiology, 2005, 567, 493-504.	2.9	26
42	Interleukin-1β, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk. JACC Basic To Translational Science, 2021, 6, 42-52.	4.1	25
43	Endurance exercise training normalizes repolarization and calcium-handling abnormalities, preventing ventricular fibrillation in a model of sudden cardiac death. Journal of Applied Physiology, 2012, 113, 1772-1783.	2.5	23
44	PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts. Journal of Physiology, 2020, 598, 2847-2873.	2.9	23
45	Ca ²⁺ -Activated K ⁺ Channels as Therapeutic Targets for Myocardial and Vascular Protection. Circulation Journal, 2015, 79, 455-462.	1.6	19
46	Chain-reaction Ca2+ signaling in the heart. Journal of Clinical Investigation, 2007, 117, 1758-1762.	8.2	18
47	Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells and Development, 2017, 26, 656-677.	2.1	17
48	The role of spatial organization of Ca2+ release sites in the generation of arrhythmogenic diastolic Ca2+ release in myocytes from failing hearts. Basic Research in Cardiology, 2017, 112, 44.	5.9	17
49	NCX-Mediated Subcellular Ca2+ Dynamics Underlying Early Afterdepolarizations in LQT2 Cardiomyocytes. Biophysical Journal, 2018, 115, 1019-1032.	0.5	17
50	Progesterone modulates SERCA2a expression and function in rabbit cardiomyocytes. American Journal of Physiology - Cell Physiology, 2014, 307, C1050-C1057.	4.6	16
51	Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. Journal of Molecular and Cellular Cardiology, 2021, 156, 105-113.	1.9	16
52	MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca ²⁺ release in hypertrophic rat cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H615-H632.	3.2	16
53	Ero1α-Dependent ERp44 Dissociation From RyR2 Contributes to Cardiac Arrhythmia. Circulation Research, 2022, 130, 711-724.	4.5	16
54	MicroRNAs in cardiovascular disease. F1000 Medicine Reports, 2011, 3, 10.	2.9	15

DMITRY TERENTYEV

#	Article	IF	CITATIONS
55	Transient Outward K ⁺ Current (I _{to}) Underlies the Right Ventricular Initiation of Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long-QT Syndrome Type 1. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005414.	4.8	15
56	The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflugers Archiv European Journal of Physiology, 2021, 473, 377-387.	2.8	14
57	miRNAs got rhythm. Life Sciences, 2011, 88, 373-383.	4.3	13
58	BKCa channel activation increases cardiac contractile recovery following hypothermic ischemia/reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H625-H633.	3.2	13
59	Enhancing Autophagy Diminishes Aberrant Ca2+ Homeostasis and Arrhythmogenesis in Aging Rabbit Hearts. Frontiers in Physiology, 2019, 10, 1277.	2.8	12
60	Late I _{Na} Blocker GS967 Supresses Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long QT Type 2. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e006875.	4.8	11
61	Dietary Omega-3 Fatty Acids Promote Arrhythmogenic Remodeling of Cellular Ca2+ Handling in a Postinfarction Model of Sudden Cardiac Death. PLoS ONE, 2013, 8, e78414.	2.5	9
62	LITAF (Lipopolysaccharide-Induced Tumor Necrosis Factor) Regulates Cardiac L-Type Calcium Channels by Modulating NEDD (Neural Precursor Cell Expressed Developmentally Downregulated Protein) 4-1 Ubiquitin Ligase. Circulation Genomic and Precision Medicine, 2019, 12, 407-420.	3.6	9
63	How to stop the fire? Control of Ca ²⁺ â€induced Ca ²⁺ release in cardiac muscle. Journal of Physiology, 2011, 589, 5899-5900.	2.9	6
64	Impact of ISK Voltage and Ca2+/Mg2+-Dependent Rectification on Cardiac Repolarization. Biophysical Journal, 2020, 119, 690-704.	0.5	5
65	RyR2 Gain-of-Function and Not So Sudden Cardiac Death. Circulation Research, 2021, 129, 417-419.	4.5	4
66	Development of muscle-specific features in cultured frog embryonic skeletal myocytes. Journal of Muscle Research and Cell Motility, 1999, 20, 517-527.	2.0	3
67	Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1â€mediated calcium entry in heart failure. Journal of Cellular and Molecular Medicine, 2021, 25, 4637-4648.	3.6	3
68	3-Week-Old Rabbit Cardiomyocytes (3wRbCM): A Novel Cellular Model for Studying Cardiac Excitation. Biophysical Journal, 2019, 116, 230a.	0.5	2
69	Sarcoplasmic Reticulum Ca Homeostasis and Heart Failure. Biological and Medical Physics Series, 2013, , 5-36.	0.4	1
70	PKA-Dependent Phosphorylation of Mitochondrial SK2 Channels Regulates Mitochondrial Calcium Uptake in Ventricular Cardiomyocytes. Biophysical Journal, 2020, 118, 328a.	0.5	1
71	Ageâ€associated attenuation of autophagy underlies ryanodine receptor hyperactivity. FASEB Journal, 2013, 27, .	0.5	0
72	LITAF regulates action potential duration by modulating NEDD4â€1â€mediated degradation of Lâ€ŧype calcium channels. FASEB Journal, 2019, 33, 824.19.	0.5	0

#	Article	IF	CITATIONS
73	Mitochondrial calpain inhibition restores defective SR-mitochondrial crosstalk in CPVT rat myocytes. Journal of General Physiology, 2022, 154, .	1.9	0