Lucy C Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/695564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reg1 and Snf1 regulate stressâ€induced relocalization of protein phosphataseâ€1 to cytoplasmic granules. FEBS Journal, 2021, 288, 4833-4848.	4.7	5
2	α-Synuclein inhibits Snx3-retromer retrograde trafficking of the conserved membrane-bound proprotein convertase Kex2 in the secretory pathway of Saccharomyces cerevisiae. Human Molecular Genetics, 2021, , .	2.9	2
3	SDS22 selectively recognizes and traps metal-deficient inactive PP1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20472-20481.	7.1	28
4	Saccharomyces cerevisiae Mhr1 can bind Xho I-induced mitochondrial DNA double-strand breaks in vivo. Mitochondrion, 2018, 42, 23-32.	3.4	5
5	New ubiquitin-dependent mechanisms regulating the Aurora B-Protein Phosphatase 1 balance in Saccharomyces cerevisiae. Journal of Cell Science, 2018, 131, .	2.0	2
6	Evidence for double-strand break mediated mitochondrial DNA replication in Saccharomyces cerevisiae. Nucleic Acids Research, 2017, 45, 7760-7773.	14.5	20
7	Molecular mechanics and dynamics characterization of an <i>in silico</i> mutated protein: A standâ€alone lab module or support activity for <i>in vivo</i> and <i>in vitro</i> analyses of targeted proteins. Biochemistry and Molecular Biology Education, 2013, 41, 402-408.	1.2	11
8	Suppressors of <i>ipl1-2</i> in Components of a Glc7 Phosphatase Complex, Cdc48 AAA ATPase, TORC1, and the Kinetochore. G3: Genes, Genomes, Genetics, 2012, 2, 1687-1701.	1.8	10
9	Temperature-sensitive <i>ipl1-2/Aurora</i> B mutation is suppressed by mutations in TOR complex 1 via the Glc7/PP1 phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3994-3999.	7.1	27
10	GABA acts as a ligand chaperone in the early secretory pathway to promote cell surface expression of GABAA receptors. Brain Research, 2010, 1346, 1-13.	2.2	39
11	A Molecular Genetics Laboratory Course Applying Bioinformatics and Cell Biology in the Context of Original Research. CBE Life Sciences Education, 2008, 7, 410-421.	2.3	27
12	Novel suppressors of α-synuclein toxicity identified using yeast. Human Molecular Genetics, 2008, 17, 3784-3795.	2.9	58
13	Glc7–Reg1 Phosphatase Signals to Yck1,2 Casein Kinase 1 to Regulate Transport Activity and Glucose-Induced Inactivation of Saccharomyces Maltose Permease. Genetics, 2006, 172, 1427-1439.	2.9	38
14	Akr1p-dependent Palmitoylation of Yck2p Yeast Casein Kinase 1 Is Necessary and Sufficient for Plasma Membrane Targeting. Journal of Biological Chemistry, 2004, 279, 27138-27147.	3.4	59
15	Constitutive GABAA Receptor Endocytosis Is Dynamin-mediated and Dependent on a Dileucine AP2 Adaptin-binding Motif within the β2 Subunit of the Receptor. Journal of Biological Chemistry, 2003, 278, 24046-24052.	3.4	83
16	Use of green fluorescent protein in living yeast cells. Methods in Enzymology, 2002, 351, 661-683.	1.0	13
17	Plasma membrane localization of the Yck2p yeast casein kinase 1 isoform requires the C-terminal extension and secretory pathway function. Journal of Cell Science, 2002, 115, 4957-4968.	2.0	50
18	The Yck2 Yeast Casein Kinase 1 Isoform Shows Cell Cycle-specific Localization to Sites of Polarized Growth and Is Required for Proper Septin Organization. Molecular Biology of the Cell, 1999, 10, 1077-1092.	2.1	63

LUCY C ROBINSON

#	Article	IF	CITATIONS
19	Functional characterization and visualization of a GABAA receptor-GFP chimera expressed in Xenopus oocytes. Molecular Brain Research, 1998, 59, 165-177.	2.3	29
20	Activation of Protein Kinase C Induces γ-Aminobutyric Acid Type A Receptor Internalization in Xenopus Oocytes. Journal of Biological Chemistry, 1998, 273, 32595-32601.	3.4	101
21	Casein Kinase IÎ ³ Subfamily Journal of Biological Chemistry, 1995, 270, 12717-12724.	3.4	99
22	TFS1: A suppressor of cdc25 mutations in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1991, 230, 241-250.	2.4	52
23	CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science, 1987, 235, 1218-1221.	12.6	258
24	Mapping of theSaccharomyces cerevisiae CDC3,CDC25, andCDC42 genes to chromosome XII by chromosome blotting and tetrad analysis. Yeast, 1987, 3, 243-253.	1.7	35
25	RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3785-3789.	7.1	192
26	Mammalian and yeast ras gene products: biological function in their heterologous systems. Science, 1985, 228, 179-184.	12.6	234