## Gianni Cesareni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954685/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids<br>Research, 2022, 50, D648-D653.                                                                   | 14.5 | 89        |
| 2  | Transcription Factor Activation Profiles (TFAP) identify compounds promoting differentiation of Acute Myeloid Leukemia cell lines. Cell Death Discovery, 2022, 8, 16.                               | 4.7  | 0         |
| 3  | SIGNORApp: a Cytoscape 3 application to access SIGNOR data. Bioinformatics, 2022, 38, 1764-1766.                                                                                                    | 4.1  | 7         |
| 4  | A Resource to Infer Molecular Paths Linking Cancer Mutations to Perturbation of Cell Metabolism.<br>Frontiers in Molecular Biosciences, 2022, 9, .                                                  | 3.5  | 3         |
| 5  | SCA-1 micro-heterogeneity in the fate decision of dystrophic fibro/adipogenic progenitors. Cell Death and Disease, 2021, 12, 122.                                                                   | 6.3  | 21        |
| 6  | Skeletal Muscle Subpopulation Rearrangements upon Rhabdomyosarcoma Development through<br>Single-Cell Mass Cytometry. Journal of Clinical Medicine, 2021, 10, 823.                                  | 2.4  | 4         |
| 7  | Biofabricating murine and human myoâ€substitutes for rapid volumetric muscle loss restoration. EMBO<br>Molecular Medicine, 2021, 13, e12778.                                                        | 6.9  | 29        |
| 8  | A Resource for the Network Representation of Cell Perturbations Caused by SARS-CoV-2 Infection.<br>Genes, 2021, 12, 450.                                                                            | 2.4  | 7         |
| 9  | Assembling Disease Networks From Causal Interaction Resources. Frontiers in Genetics, 2021, 12, 694468.                                                                                             | 2.3  | 4         |
| 10 | Characterization of the Skeletal Muscle Secretome Reveals a Role for Extracellular Vesicles and IL1α/IL1β<br>in Restricting Fibro/Adipogenic Progenitor Adipogenesis. Biomolecules, 2021, 11, 1171. | 4.0  | 10        |
| 11 | SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. Nucleic Acids Research, 2020, 48, D504-D510.                                                                                      | 14.5 | 160       |
| 12 | CancerGeneNet: linking driver genes to cancer hallmarks. Nucleic Acids Research, 2020, 48, D416-D421.                                                                                               | 14.5 | 29        |
| 13 | HiPPO and PANDA: Two Bioinformatics Tools to Support Analysis of Mass Cytometry Data. Journal of<br>Computational Biology, 2020, 27, 1283-1294.                                                     | 1.6  | 0         |
| 14 | Towards a unified open access dataset of molecular interactions. Nature Communications, 2020, 11, 6144.                                                                                             | 12.8 | 49        |
| 15 | High-Dimensional Single-Cell Quantitative Profiling of Skeletal Muscle Cell Population Dynamics<br>during Regeneration. Cells, 2020, 9, 1723.                                                       | 4.1  | 18        |
| 16 | Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/Î <sup>2</sup> -catenin axis. Cell Death and Differentiation, 2020, 27, 2921-2941.                       | 11.2 | 69        |
| 17 | Janus effect of glucocorticoids on differentiation of muscle fibro/adipogenic progenitors. Scientific<br>Reports, 2020, 10, 5363.                                                                   | 3.3  | 18        |
| 18 | Toward Highâ€Dimensional Singleâ€Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune<br>Cells by Singleâ€Cell Mass Cytometry. Small, 2020, 16, 2000123.                           | 10.0 | 10        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The IMEx coronavirus interactome: an evolving map of <i>Coronaviridae</i> –host molecular interactions. Database: the Journal of Biological Databases and Curation, 2020, 2020, .            | 3.0  | 34        |
| 20 | Metabolic reprogramming of fibro/adipogenic progenitors facilitates muscle regeneration. Life<br>Science Alliance, 2020, 3, e202000646.                                                      | 2.8  | 36        |
| 21 | CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules, 2019, 9, 284.                                                                                                     | 4.0  | 12        |
| 22 | Lowe syndrome–linked endocytic adaptors direct membrane cycling kinetics with OCRL<br>in <i>Dictyostelium discoideum</i> . Molecular Biology of the Cell, 2019, 30, 2268-2282.               | 2.1  | 2         |
| 23 | Myo-REG: A Portal for Signaling Interactions in Muscle Regeneration. Frontiers in Physiology, 2019, 10, 1216.                                                                                | 2.8  | 8         |
| 24 | Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. FEBS Journal, 2019, 286, 653-677.                                                                                 | 4.7  | 22        |
| 25 | Metformin Delays Satellite Cell Activation and Maintains Quiescence. Stem Cells International, 2019, 2019, 1-19.                                                                             | 2.5  | 32        |
| 26 | CausalTAB: the PSI-MITAB 2.8 updated format for signalling data representation and dissemination.<br>Bioinformatics, 2019, 35, 3779-3785.                                                    | 4.1  | 32        |
| 27 | CUBAN, a Case Study of Selective Binding: Structural Details of the Discrimination between Ubiquitin and NEDD8. International Journal of Molecular Sciences, 2019, 20, 1185.                 | 4.1  | 3         |
| 28 | The immunosuppressant drug azathioprine restrains adipogenesis of muscle Fibro/Adipogenic<br>Progenitors from dystrophic mice by affecting AKT signaling. Scientific Reports, 2019, 9, 4360. | 3.3  | 20        |
| 29 | Osteogenic differentiation of skeletal muscle progenitor cells is activated by the DNA damage response. Scientific Reports, 2019, 9, 5447.                                                   | 3.3  | 11        |
| 30 | Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis.<br>Life Science Alliance, 2019, 2, e201900437.                                          | 2.8  | 41        |
| 31 | Combining Phosphoproteomics Datasets and Literature Information to Reveal the Functional Connections in a Cell Phosphorylation Network. Proteomics, 2018, 18, 1700311.                       | 2.2  | 15        |
| 32 | SPV: a JavaScript Signaling Pathway Visualizer. Bioinformatics, 2018, 34, 2684-2686.                                                                                                         | 4.1  | 12        |
| 33 | DISNOR: a disease network open resource. Nucleic Acids Research, 2018, 46, D527-D534.                                                                                                        | 14.5 | 42        |
| 34 | Gene Regulatory Network Modeling of Macrophage Differentiation Corroborates the Continuum<br>Hypothesis of Polarization States. Frontiers in Physiology, 2018, 9, 1659.                      | 2.8  | 102       |
| 35 | Group I Paks support muscle regeneration and counteract cancerâ€associated muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 727-746.                                     | 7.3  | 20        |
| 36 | Encompassing new use cases - level 3.0 of the HUPO-PSI format for molecular interactions. BMC Bioinformatics, 2018, 19, 134.                                                                 | 2.6  | 47        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases. Journal of Biological Chemistry, 2017, 292, 4942-4952. | 3.4  | 8         |
| 38 | Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers inÂvitro and inÂvivo. Biomaterials, 2017, 131, 98-110.            | 11.4 | 252       |
| 39 | Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nature Communications, 2017, 8, 1109.                                    | 12.8 | 111       |
| 40 | SIGNOR: A Database of Causal Relationships Between Biological Entities—A Short Guide to Searching and Browsing. Current Protocols in Bioinformatics, 2017, 58, 8.23.1-8.23.16.       | 25.8 | 14        |
| 41 | Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays. Methods<br>in Molecular Biology, 2017, 1518, 177-193.                                     | 0.9  | 3         |
| 42 | Regulation of myoblast differentiation by metabolic perturbations induced by metformin. PLoS ONE, 2017, 12, e0182475.                                                                | 2.5  | 28        |
| 43 | Structural studies and SH3 domain binding properties of a human antiviral salivary prolineâ€rich peptide. Biopolymers, 2016, 106, 714-725.                                           | 2.4  | 6         |
| 44 | SH3 and SH2: Prototypic Domains to Mediate Regulatory Mechanisms in the Cell. , 2016, , 112-121.                                                                                     |      | 0         |
| 45 | A subset of RAB proteins modulates PP2A phosphatase activity. Scientific Reports, 2016, 6, 32857.                                                                                    | 3.3  | 5         |
| 46 | Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away<br>from a Pro-growth State. Cell Systems, 2016, 2, 159-171.                            | 6.2  | 76        |
| 47 | The cell-autonomous mechanisms underlying the activity of metformin as an anticancer drug. British<br>Journal of Cancer, 2016, 115, 1451-1456.                                       | 6.4  | 23        |
| 48 | Tools and data services registry: a community effort to document bioinformatics resources. Nucleic<br>Acids Research, 2016, 44, D38-D47.                                             | 14.5 | 113       |
| 49 | Characterization by mass cytometry of different methods for the preparation of muscle mononuclear cells. New Biotechnology, 2016, 33, 514-523.                                       | 4.4  | 9         |
| 50 | Alterations in the phosphoproteomic profile of cells expressing a non-functional form of the SHP2 phosphatase. New Biotechnology, 2016, 33, 524-536.                                 | 4.4  | 7         |
| 51 | SIGNOR: a database of causal relationships between biological entities. Nucleic Acids Research, 2016, 44, D548-D554.                                                                 | 14.5 | 243       |
| 52 | The hierarchical organization of natural protein interaction networks confers self-organization properties on pseudocells. BMC Systems Biology, 2015, 9, S3.                         | 3.0  | 5         |
| 53 | VirusMentha: a new resource for virus-host protein interactions. Nucleic Acids Research, 2015, 43, D588-D592.                                                                        | 14.5 | 141       |
| 54 | RNF11 is a GGA protein cargo and acts as a molecular adaptor for GGA3 ubiquitination mediated by Itch.<br>Oncogene, 2015, 34, 3377-3390.                                             | 5.9  | 15        |

| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The adapter protein CD2AP binds to p53 protein in the cytoplasm and can discriminate its polymorphic variants P72R. Journal of Biochemistry, 2015, 157, 101-111.                                                                                                    | 1.7  | 17        |
| 56 | Metformin Protects Skeletal Muscle from Cardiotoxin Induced Degeneration. PLoS ONE, 2014, 9, e114018.                                                                                                                                                               | 2.5  | 45        |
| 57 | 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Frontiers<br>in Physiology, 2014, 5, 203.                                                                                                                                | 2.8  | 90        |
| 58 | Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways. Frontiers in Genetics, 2014, 5, 115.                                                                                                      | 2.3  | 13        |
| 59 | The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases.<br>Nucleic Acids Research, 2014, 42, D358-D363.                                                                                                                    | 14.5 | 1,634     |
| 60 | KinomeXplorer: an integrated platform for kinome biology studies. Nature Methods, 2014, 11, 603-604.                                                                                                                                                                | 19.0 | 304       |
| 61 | mentha: a resource for browsing integrated protein-interaction networks. Nature Methods, 2013, 10, 690-691.                                                                                                                                                         | 19.0 | 291       |
| 62 | HuPho: the human phosphatase portal. FEBS Journal, 2013, 280, 379-387.                                                                                                                                                                                              | 4.7  | 55        |
| 63 | The SH2 Domain Interaction Landscape. Cell Reports, 2013, 3, 1293-1305.                                                                                                                                                                                             | 6.4  | 110       |
| 64 | Exploring the diversity of SPRY/B30.2-mediated interactions. Trends in Biochemical Sciences, 2013, 38, 38-46.                                                                                                                                                       | 7.5  | 67        |
| 65 | MINT, the molecular interaction database: 2012 update. Nucleic Acids Research, 2012, 40, D857-D861.                                                                                                                                                                 | 14.5 | 917       |
| 66 | Mapping the human phosphatome on growth pathways. Molecular Systems Biology, 2012, 8, 603.                                                                                                                                                                          | 7.2  | 24        |
| 67 | Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nature Methods, 2012, 9, 345-350.                                                                                                                                        | 19.0 | 500       |
| 68 | Reactive Oxygen Species and Epidermal Growth Factor Are Antagonistic Cues Controlling SHP-2<br>Dimerization. Molecular and Cellular Biology, 2012, 32, 1998-2009.                                                                                                   | 2.3  | 9         |
| 69 | Counteracting Effects Operating on Src Homology 2 Domain-containing Protein-tyrosine Phosphatase<br>2 (SHP2) Function Drive Selection of the Recurrent Y62D and Y63C Substitutions in Noonan<br>Syndrome*. Journal of Biological Chemistry, 2012, 287, 27066-27077. | 3.4  | 35        |
| 70 | The human phosphatase interactome: An intricate family portrait. FEBS Letters, 2012, 586, 2732-2739.                                                                                                                                                                | 2.8  | 184       |
| 71 | The 4G10, pY20 and p-TYR-100 antibody specificity: profiling by peptide microarrays. New Biotechnology, 2012, 29, 571-577.                                                                                                                                          | 4.4  | 52        |
| 72 | The protein interaction network mediated by human SH3 domains. Biotechnology Advances, 2012, 30,<br>4-15.                                                                                                                                                           | 11.7 | 49        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nature Methods, 2011, 8, 528-529.                                                                                                               | 19.0 | 274       |
| 74 | Structural and functional protein network analyses predict novel signaling functions for rhodopsin. Molecular Systems Biology, 2011, 7, 551.                                                                         | 7.2  | 33        |
| 75 | Benchmarking of the 2010 BioCreative Challenge III text-mining competition by the BioGRID and MINT interaction databases. BMC Bioinformatics, 2011, 12, S8.                                                          | 2.6  | 11        |
| 76 | Combining peptide recognition specificity and context information for the prediction of the 14â€3â€mediated interactome in <i>S. cerevisiae</i> and <i>H. sapiens</i> . Proteomics, 2011, 11, 128-143.               | 2.2  | 34        |
| 77 | Identification of New Substrates of the Protein-tyrosine Phosphatase PTP1B by Bayesian Integration of<br>Proteome Evidence. Journal of Biological Chemistry, 2011, 286, 4173-4185.                                   | 3.4  | 41        |
| 78 | Enriching the viral–host interactomes with interactions mediated by SH3 domains. Amino Acids, 2010, 38, 1541-1547.                                                                                                   | 2.7  | 9         |
| 79 | The FEBS Letters SDA corpus: A collection of protein interaction articles with high quality annotations for the BioCreative II.5 online challenge and the text mining community. FEBS Letters, 2010, 584, 4129-4130. | 2.8  | 8         |
| 80 | The FEBS Letters/BioCreative II.5 experiment: making biological information accessible. Nature Biotechnology, 2010, 28, 897-899.                                                                                     | 17.5 | 42        |
| 81 | An Overview of BioCreative II.5. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7, 385-399.                                                                                                | 3.0  | 83        |
| 82 | MINT, the molecular interaction database: 2009 update. Nucleic Acids Research, 2010, 38, D532-D539.                                                                                                                  | 14.5 | 458       |
| 83 | Tumor Suppressor Density-enhanced Phosphatase-1 (DEP-1) Inhibits the RAS Pathway by Direct<br>Dephosphorylation of ERK1/2 Kinases. Journal of Biological Chemistry, 2009, 284, 22048-22058.                          | 3.4  | 68        |
| 84 | Bayesian Modeling of the Yeast SH3 Domain Interactome Predicts Spatiotemporal Dynamics of Endocytosis Proteins. PLoS Biology, 2009, 7, e1000218.                                                                     | 5.6  | 172       |
| 85 | VirusMINT: a viral protein interaction database. Nucleic Acids Research, 2009, 37, D669-D673.                                                                                                                        | 14.5 | 180       |
| 86 | Recurated protein interaction datasets. Nature Methods, 2009, 6, 860-861.                                                                                                                                            | 19.0 | 58        |
| 87 | Linear Motif Atlas for Phosphorylation-Dependent Signaling. Science Signaling, 2008, 1, ra2.                                                                                                                         | 3.6  | 418       |
| 88 | Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2008, 8, 53-63.                                                                   | 2.3  | 32        |
| 89 | Linking entries in protein interaction database to structured text: The FEBS Letters experiment. FEBS<br>Letters, 2008, 582, 1171-1177.                                                                              | 2.8  | 62        |
| 90 | <i>Spotlight on…</i> Gianni Cesareni. FEBS Letters, 2008, 582, 1291-1292.                                                                                                                                            | 2.8  | 0         |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Protein interactions: integration leads to belief. Trends in Biochemical Sciences, 2008, 33, 241-242.                                                                                                                 | 7.5  | 33        |
| 92  | Diverse driving forces underlie the invariant occurrence of the T42A, E139D, I282V and T468M SHP2<br>amino acid substitutions causing Noonan and LEOPARD syndromes. Human Molecular Genetics, 2008,<br>17, 2018-2029. | 2.9  | 79        |
| 93  | Domains Mediate Protein-Protein Interactions and Nucleate Protein Assemblies. Handbook of Experimental Pharmacology, 2008, , 383-405.                                                                                 | 1.8  | 6         |
| 94  | MINT: the Molecular INTeraction database. Nucleic Acids Research, 2007, 35, D572-D574.                                                                                                                                | 14.5 | 795       |
| 95  | DOMINO: a database of domain-peptide interactions. Nucleic Acids Research, 2007, 35, D557-D560.                                                                                                                       | 14.5 | 76        |
| 96  | Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biology, 2007, 5, 44.                                                                                                       | 3.8  | 237       |
| 97  | WI-PHI: A weighted yeast interactome enriched for direct physical interactions. Proteomics, 2007, 7, 932-943.                                                                                                         | 2.2  | 83        |
| 98  | The minimum information required for reporting a molecular interaction experiment (MIMIx). Nature<br>Biotechnology, 2007, 25, 894-898.                                                                                | 17.5 | 274       |
| 99  | Comparative interactomics: comparing apples and pears?. Trends in Biotechnology, 2007, 25, 448-454.                                                                                                                   | 9.3  | 81        |
| 100 | Conjugation to Nedd8 Instigates Ubiquitylation and Down-regulation of Activated Receptor Tyrosine<br>Kinases. Journal of Biological Chemistry, 2006, 281, 21640-21651.                                                | 3.4  | 135       |
| 101 | The ubiquitin–protein ligase Itch regulates p73 stability. EMBO Journal, 2005, 24, 836-848.                                                                                                                           | 7.8  | 286       |
| 102 | Methods to reveal domain networks. Drug Discovery Today, 2005, 10, 1111-1117.                                                                                                                                         | 6.4  | 28        |
| 103 | HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinformatics, 2005, 6, S21.                                                               | 2.6  | 128       |
| 104 | Comparative interactomics. FEBS Letters, 2005, 579, 1828-1833.                                                                                                                                                        | 2.8  | 44        |
| 105 | Probing Protein-tyrosine Phosphatase Substrate Specificity Using a Phosphotyrosine-containing Phage<br>Library. Journal of Biological Chemistry, 2004, 279, 311-318.                                                  | 3.4  | 42        |
| 106 | IntAct: an open source molecular interaction database. Nucleic Acids Research, 2004, 32, 452D-455.                                                                                                                    | 14.5 | 864       |
| 107 | Protein Interaction Networks by Proteome Peptide Scanning. PLoS Biology, 2004, 2, e14.                                                                                                                                | 5.6  | 197       |
| 108 | The HUPO PSI's Molecular Interaction format—a community standard for the representation of protein interaction data. Nature Biotechnology, 2004, 22, 177-183.                                                         | 17.5 | 581       |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Selectivity and promiscuity in the interaction network mediated by protein recognition modules. FEBS Letters, 2004, 567, 74-79.                                                                                                      | 2.8  | 65        |
| 110 | ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins.<br>Nucleic Acids Research, 2003, 31, 3625-3630.                                                                                  | 14.5 | 555       |
| 111 | In Vitro Evolution of Recognition Specificity Mediated by SH3 Domains Reveals Target Recognition Rules. Journal of Biological Chemistry, 2002, 277, 21666-21674.                                                                     | 3.4  | 47        |
| 112 | A Combined Experimental and Computational Strategy to Define Protein Interaction Networks for Peptide Recognition Modules. Science, 2002, 295, 321-324.                                                                              | 12.6 | 668       |
| 113 | MINT: a Molecular INTeraction database. FEBS Letters, 2002, 513, 135-140.                                                                                                                                                            | 2.8  | 665       |
| 114 | Normalization of nomenclature for peptide motifs as ligands of modular protein domains. FEBS<br>Letters, 2002, 513, 141-144.                                                                                                         | 2.8  | 118       |
| 115 | Can we infer peptide recognition specificity mediated by SH3 domains?. FEBS Letters, 2002, 513, 38-44.                                                                                                                               | 2.8  | 124       |
| 116 | Making decisions in G1. FEBS Letters, 2001, 490, 109-109.                                                                                                                                                                            | 2.8  | 0         |
| 117 | Distinct Binding Specificity of the Multiple PDZ Domains of INADL, a Human Protein with Homology to<br>INAD from Drosophila melanogaster. Journal of Biological Chemistry, 2001, 276, 42122-42130.                                   | 3.4  | 58        |
| 118 | SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family.<br>Journal of Molecular Biology, 2000, 298, 313-328.                                                                                | 4.2  | 86        |
| 119 | Domain repertoires as a tool to derive protein recognition rules. FEBS Letters, 2000, 480, 49-54.                                                                                                                                    | 2.8  | 16        |
| 120 | The SH3 Domains of Endophilin and Amphiphysin Bind to the Proline-rich Region of Synaptojanin 1 at<br>Distinct Sites That Display an Unconventional Binding Specificity. Journal of Biological Chemistry,<br>1999, 274, 32001-32007. | 3.4  | 122       |
| 121 | A novel peptide-SH3 interaction. EMBO Journal, 1999, 18, 5300-5309.                                                                                                                                                                  | 7.8  | 172       |
| 122 | Phage displayed peptide libraries. Combinatorial Chemistry and High Throughput Screening, 1999, 2, 1-17.                                                                                                                             | 1.1  | 5         |
| 123 | Phage Displayed Peptide Libraries. Combinatorial Chemistry and High Throughput Screening, 1999, 2, 1-17.                                                                                                                             | 1.1  | 30        |
| 124 | Intersectin, a Novel Adaptor Protein with Two Eps15 Homology and Five Src Homology 3 Domains.<br>Journal of Biological Chemistry, 1998, 273, 31401-31407.                                                                            | 3.4  | 264       |
| 125 | Recognition specificity of individual EH domains of mammals and yeast. EMBO Journal, 1998, 17, 6541-6550.                                                                                                                            | 7.8  | 106       |
| 126 | Binding specificity and in vivo targets of the EH domain, a novel protein–protein interaction module.<br>Genes and Development, 1997, 11, 2239-2249.                                                                                 | 5.9  | 293       |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Construction, Exploitation and Evolution of a New Peptide Library Displayed at High Density by Fusion to the Major Coat Protein of Filamentous Phage. Biological Chemistry, 1997, 378, 517-21.             | 2.5 | 30        |
| 128 | Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides 1 1Edited by J. Karn. Journal of Molecular Biology, 1997, 269, 694-703. | 4.2 | 74        |
| 129 | Escher: A new docking procedure applied to the reconstruction of protein tertiary structure.<br>Proteins: Structure, Function and Bioinformatics, 1997, 28, 556-567.                                       | 2.6 | 74        |
| 130 | Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. Journal of Molecular Biology, 1991, 222, 301-310.                                        | 4.2 | 400       |
| 131 | Control of ColE1 plasmid replication by antisense RNA. Trends in Genetics, 1991, 7, 230-235.                                                                                                               | 6.7 | 91        |
| 132 | Recombinant H-chain ferritins: Effects of changes in the 3-fold channels. FEBS Letters, 1989, 247, 268-272.                                                                                                | 2.8 | 69        |
| 133 | The Most Abundant Small Cytoplasmic RNA of <i>Saccharomyces cerevisiae</i> Has an Important<br>Function Required for Normal Cell Growth. Molecular and Cellular Biology, 1989, 9, 3260-3268.               | 2.3 | 75        |
| 134 | The target of the negative regulator of pMB1 replication overlaps with part of the repressor coding sequence. Molecular Genetics and Genomics, 1981, 184, 40-45.                                           | 2.4 | 19        |
| 135 | Adipogenesis of Skeletal Muscle Fibro/Adipogenic Progenitors is Controlled by the WNT5a/GSK3/β-Catenin Axis. SSRN Electronic Journal, 0, , .                                                               | 0.4 | 7         |