John E Dick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6954329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiomic Profiling of Central Nervous System Leukemia Identifies mRNA Translation as a Therapeutic Target. Blood Cancer Discovery, 2022, 3, 16-31.	5.0	4
2	An improved molecular inversion probe based targeted sequencing approach for low variant allele frequency. NAR Genomics and Bioinformatics, 2022, 4, lqab125.	3.2	4
3	A novel CD34-specific T-cell engager efficiently depletes acute myeloid leukemia and leukemic stem cells <i>in vitro</i> and <i>in vivo</i> . Haematologica, 2022, 107, 1786-1795.	3.5	5
4	A clinical laboratory–developed LSC17 stemness score assay for rapid risk assessment of patients with acute myeloid leukemia. Blood Advances, 2022, 6, 1064-1073.	5.2	11
5	SmMIP-tools: a computational toolset for processing and analysis of single-molecule molecular inversion probes-derived data. Bioinformatics, 2022, 38, 2088-2095.	4.1	4
6	Reconstructing Complex Cancer Evolutionary Histories from Multiple Bulk DNA Samples Using Pairtree. Blood Cancer Discovery, 2022, 3, 208-219.	5.0	8
7	Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML. Cell Reports, 2022, 38, 110481.	6.4	4
8	A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nature Medicine, 2022, 28, 1212-1223.	30.7	104
9	PLAG1 dampens protein synthesis to promote human hematopoietic stem cell self-renewal. Blood, 2022, 140, 992-1008.	1.4	11
10	The metabolic enzyme hexokinase 2 localizes to the nucleus in AML and normal haematopoietic stem and progenitor cells to maintain stemness. Nature Cell Biology, 2022, 24, 872-884.	10.3	25
11	Clonal haematopoiesis is associated with higher mortality in patients with cardiogenic shock. European Journal of Heart Failure, 2022, 24, 1573-1582.	7.1	20
12	The Transition from Quiescent to Activated States in Human Hematopoietic Stem Cells Is Governed by Dynamic 3D Genome Reorganization. Cell Stem Cell, 2021, 28, 488-501.e10.	11.1	51
13	CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood, 2021, 137, 661-677.	1.4	103
14	Biological and therapeutic implications of a unique subtype of NPM1 mutated AML. Nature Communications, 2021, 12, 1054.	12.8	29
15	A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness. Nature Immunology, 2021, 22, 723-734.	14.5	26
16	Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nature Communications, 2021, 12, 3341.	12.8	197
17	Enhancer Hijacking Drives Oncogenic <i>BCL11B</i> Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discovery, 2021, 11, 2846-2867.	9.4	83
18	Mapping the cellular origin and early evolution of leukemia in Down syndrome. Science, 2021, 373, .	12.6	42

#	Article	IF	CITATIONS
19	Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell, 2021, 28, 1851-1867.e8.	11.1	43
20	TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell, 2021, 28, 1838-1850.e10.	11.1	69
21	Human, mouse, and dog bone marrow show similar mesenchymal stromal cells within a distinctive microenvironment. Experimental Hematology, 2021, 100, 41-51.	0.4	4
22	Interacting evolutionary pressures drive mutation dynamics and health outcomes in aging blood. Nature Communications, 2021, 12, 4921.	12.8	11
23	Poster: ALL-144: Oncogenic Deregulation of BCL11B in Lineage Ambiguous Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S207.	0.4	0
24	Sphingosine-1-Phosphate Receptor 3 Potentiates Inflammatory Programs in Normal and Leukemia Stem Cells to Promote Differentiation. Blood Cancer Discovery, 2021, 2, 32-53.	5.0	35
25	A Novel CD34-Specific T-Cell Engager Efficiently Depletes Stem Cells and Acute Myeloid Leukemia Cells in Vitro and In Vivo. Blood, 2021, 138, 2861-2861.	1.4	1
26	PLAGL2 Independently Drives Aberrant Erythropoiesis and Initiation of Preleukemic State. Blood, 2021, 138, 3663-3663.	1.4	0
27	Clinical Significance of Clonal Hematopoiesis in the Setting of Autologous Stem Cell Transplantation for Lymphoma. Blood, 2021, 138, 655-655.	1.4	0
28	KDM6 Demethylases Integrate DNA Repair Gene Regulation: Loss of KDM6A Sensitizes AML to PARP Inhibition and Potentiates with BCL2 Blockade. Blood, 2021, 138, 25-25.	1.4	0
29	Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature, 2020, 586, 769-775.	27.8	101
30	Human Aging Alters the Spatial Organization between CD34+ Hematopoietic Cells and Adipocytes in Bone Marrow. Stem Cell Reports, 2020, 15, 317-325.	4.8	30
31	Integration of intra-sample contextual error modeling for improved detection of somatic mutations from deep sequencing. Science Advances, 2020, 6, .	10.3	6
32	CD200 expression marks leukemia stem cells in human AML. Blood Advances, 2020, 4, 5402-5413.	5.2	31
33	Mutational Landscape and Patterns of Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 96-111.	5.0	93
34	Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs. Cancer Discovery, 2020, 10, 568-587.	9.4	72
35	Cellular and molecular architecture of hematopoietic stem cells and progenitors in genetic models of bone marrow failure. JCI Insight, 2020, 5, .	5.0	6
36	3017 – A DISTINCT SUBSET OF LATENT LONG-TERM HUMAN HEMATOPOIETIC STEM CELLS RESISTS REGENERATIVE STRESS TO PRESERVES STEMNESS. Experimental Hematology, 2020, 88, S43.	0.4	0

#	Article	IF	CITATIONS
37	Dichotomous Regulation of Lysosomes By MYC and Tfeb Controls Hematopoietic Stem Cell Fate. Blood, 2020, 136, 34-34.	1.4	0
38	Elevated Expression of Mir-130a in t(8,21) AML Reinforces the Aberrant Molecular Program of AML1-ETO. Blood, 2020, 136, 41-42.	1.4	0
39	Variation in Stem Cell Driven Hierarchies Underlies Clinical Outcome and Drug Response in AML. Blood, 2020, 136, 27-28.	1.4	0
40	A Human Model of Down Syndrome Associated Leukemia Reveals Different Cell of Origins for Initiation and Progression. Blood, 2020, 136, 11-12.	1.4	0
41	Opposing Evolutionary Pressures Drive Clonal Evolution and Health Outcomes in the Aging Blood System. Blood, 2020, 136, 37-37.	1.4	0
42	Functional Investigation of the Argonaute Proteins in Human Hematopoietic Stem and Progenitor Cells. Blood, 2020, 136, 32-32.	1.4	0
43	Mutational Landscape and Patterns of Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 96-111.	5.0	3
44	The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia. Leukemia, 2019, 33, 348-357.	7.2	44
45	Sphingolipid Modulation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal. Cell Stem Cell, 2019, 25, 639-653.e7.	11.1	79
46	Functional profiling of single CRISPR/Cas9-edited human long-term hematopoietic stem cells. Nature Communications, 2019, 10, 4730.	12.8	30
47	ERG ENHANCER-BASED REPORTER IDENTIFIES LEUKEMIA CELLS WITH ELEVATED LEUKEMOGENIC POTENTIAL DRIVEN BY ERG-USP9X FEED-FORWARD REGULATION. Experimental Hematology, 2019, 76, S78.	0.4	0
48	A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity. Leukemia, 2019, 33, 2061-2077.	7.2	13
49	An <i>ERG</i> Enhancer–Based Reporter Identifies Leukemia Cells with Elevated Leukemogenic Potential Driven by ERG-USP9X Feed-Forward Regulation. Cancer Research, 2019, 79, 3862-3876.	0.9	10
50	High efficiency error suppression for accurate detection of low-frequency variants. Nucleic Acids Research, 2019, 47, e87-e87.	14.5	36
51	A stemness screen reveals C3orf54/INKA1 as a promoter of human leukemia stem cell latency. Blood, 2019, 133, 2198-2211.	1.4	25
52	Characterization of inv(3) cell line OCI-AML-20 with stroma-dependent CD34 expression. Experimental Hematology, 2019, 69, 27-36.	0.4	5
53	A Novel Cereblon E3 Ligase Modulator Eradicates Acute Myeloid Leukemia Stem Cells through Degradation of Translation Termination Factor GSPT1. Blood, 2019, 134, 3940-3940.	1.4	7
54	Understanding Pre-Leukemia in Trisomy 21 Human HSC and Modeling Progression Towards Down Syndrome Associated Leukemia Using CRISPR/Cas9 at Single Cell Resolution. Blood, 2019, 134, 2531-2531.	1.4	1

#	Article	lF	CITATIONS
55	The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness. Blood, 2019, 134, 2532-2532.	1.4	0
56	HSCs Fated to Progress to Blast Phase Can be Detected in Myelofibrosis Patients Several Years Prior to Leukemic Transformation. Blood, 2019, 134, 1676-1676.	1.4	0
57	A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature, 2018, 553, 515-520.	27.8	256
58	Allogeneic Human Double Negative T Cells as a Novel Immunotherapy for Acute Myeloid Leukemia and Its Underlying Mechanisms. Clinical Cancer Research, 2018, 24, 370-382.	7.0	57
59	Distinct patterns of clonal evolution in patients with concurrent myelo- and lymphoproliferative neoplasms. Blood, 2018, 132, 2201-2205.	1.4	4
60	Integrated Stress Response Activity Marks Stem Cells in Normal Hematopoiesis and Leukemia. Cell Reports, 2018, 25, 1109-1117.e5.	6.4	88
61	Development of ERG-Enhancer Fluorescent Reporter System to Decipher Functional Heterogeneity in Leukemia. Experimental Hematology, 2018, 64, S87.	0.4	0
62	Functional and Molecular Consequences of Trisomy 21 on Human Fetal Hematopoiesis. Experimental Hematology, 2018, 64, S79.	0.4	0
63	Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance. Cell Stem Cell, 2018, 23, 572-585.e7.	11.1	86
64	Prediction of acute myeloid leukaemia risk in healthy individuals. Nature, 2018, 559, 400-404.	27.8	617
65	Targeting the Mitochondrial Metallochaperone Cox17 Reduces DNA Methylation and Promotes AML Differentiation through a Copper Dependent Mechanism. Blood, 2018, 132, 1339-1339.	1.4	4
66	A Novel Predictor of Response to Gemtuzumab Ozogamicin Therapy in AML Provides Strategies for Sensitization of Leukemia Stem Cells in Individual Patients. Blood, 2018, 132, 2765-2765.	1.4	2
67	Sphingosine-1-Phosphate Receptor 3 (S1PR3) Promotes Myeloid Commitment of Human Hematopoietic and Leukemic Stem Cells. Blood, 2018, 132, 1329-1329.	1.4	0
68	Functional and Molecular Consequences of Trisomy 21 on Human Fetal Hematopoiesis. Blood, 2018, 132, 1317-1317.	1.4	0
69	Developing Applicable and Cost-Efficient Screens for Early Detection of AML. Blood, 2018, 132, 90-90.	1.4	1
70	Modeling the Initiation and Evolution of Down Syndrome Associated Leukemia Using CRISPR/Cas9. Blood, 2018, 132, 3891-3891.	1.4	0
71	AML-Fated Clones Arise in Stem and Progenitor Cells in Myelofibrosis Patients Several Years Prior to AML Diagnosis. Blood, 2018, 132, 4321-4321.	1.4	0
72	Sphingolipid Perturbation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal. Blood, 2018, 132, 170-170.	1.4	2

#	Article	IF	CITATIONS
73	Inactivation of Stage-Specific B-Cell Commitment Genes Generates Distinct Molecular Subtypes of BCR-ABL1 Lymphoblastic Leukemia. Blood, 2018, 132, 569-569.	1.4	0
74	Microrna-130a Regulates Hematopoietic Stem Cell Self-Renewal By Repressing Chromatin Modifiers and Shaping the Accessible Chromatin Landscape. Blood, 2018, 132, 3824-3824.	1.4	2
75	A Stemness Screen Reveals C3ORF54/INKA1 As a Gate-Keeper of Human Stem Cell Latency. Blood, 2018, 132, 325-325.	1.4	0
76	Relapse-Initiating Clones Preexisting at Diagnosis in B- Cell Acute Lymphoblastic Leukemia Help Predict Molecular Pathways of Relapse. Blood, 2018, 132, 915-915.	1.4	1
77	The Integrated Stress Response Activity Marks Stem Cells in Normal Hematopoiesis and Leukemia. Blood, 2018, 132, 1276-1276.	1.4	1
78	Myelofibrosis Is Initiated and Sustained By Rare Multipotent Stem Cells. Blood, 2018, 132, 1790-1790.	1.4	0
79	Identification of Gene Regulatory Networks Governing Stemness Properties of Human HSC and LSC. Blood, 2018, 132, 3832-3832.	1.4	0
80	A cluster of enhancer modules directs differential MYC expression along the normal and leukemic haematopoietic stem cell hierarchies. Experimental Hematology, 2017, 53, S130-S131.	0.4	0
81	Competitive in vivo screening of 64 candidate leukemia stem cell self-renewal regulators selects for genes protracting stem cell latency. Experimental Hematology, 2017, 53, S91.	0.4	0
82	Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 2017, 547, 104-108.	27.8	424
83	Enhanced human hematopoietic stem and progenitor cell engraftment by blocking donor T cell–mediated TNFα signaling. Science Translational Medicine, 2017, 9, .	12.4	23
84	Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. Journal of Clinical Investigation, 2017, 127, 2392-2406.	8.2	64
85	SMYD2 lysine methyltransferase regulates leukemia cell growth and regeneration after genotoxic stress. Oncotarget, 2017, 8, 16712-16727.	1.8	18
86	Dissecting the cellular of down syndrome TMD and AMKL. Experimental Hematology, 2017, 53, S45.	0.4	0
87	Molecular landscapes of human hematopoietic stem cells in health and leukemia. Annals of the New York Academy of Sciences, 2016, 1370, 5-14.	3.8	24
88	A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature, 2016, 540, 433-437.	27.8	617
89	Global proteomics dataset of miR-126 overexpression in acute myeloid leukemia. Data in Brief, 2016, 9, 57-61.	1.0	12
90	A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature, 2016, 538, 378-382.	27.8	418

#	Article	IF	CITATIONS
91	Ectopic miR-125a Expression Induces Long-Term Repopulating Stem Cell Capacity in Mouse and Human Hematopoietic Progenitors. Cell Stem Cell, 2016, 19, 383-396.	11.1	52
92	Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nature Genetics, 2016, 48, 1481-1489.	21.4	231
93	miRNA-126 Orchestrates an Oncogenic Program in B Cell Precursor Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 29, 905-921.	16.8	57
94	An Integrated Analysis of Heterogeneous Drug Responses in Acute Myeloid Leukemia That Enables the Discovery of Predictive Biomarkers. Cancer Research, 2016, 76, 1214-1224.	0.9	16
95	Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 29, 186-200.	16.8	118
96	miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell, 2016, 29, 214-228.	16.8	216
97	Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science, 2016, 351, aab2116.	12.6	597
98	CD200 Is a Marker of LSC Activity in Acute Myeloid Leukemia. Blood, 2016, 128, 1705-1705.	1.4	1
99	Donor Chip Causes Donor-Derived Clonal Hematopoiesis As an Early Complication of Allogeneic Stem Cell Transplantation. Blood, 2016, 128, 987-987.	1.4	0
100	Chromatin Accessibility Identifies CTCF As a Gatekeeper of Stemness Functions in Human Hematopoietic Development. Blood, 2016, 128, 3873-3873.	1.4	0
101	Linking Subclonal Genetic Diversity with Functional Heterogeneity Identifies Diagnosis Subclones Destined to Relapse. Blood, 2016, 128, 605-605.	1.4	0
102	Sphingolipids Regulate Myeloid-Erythroid Fate Determination in Human Hematopoiesis. Blood, 2016, 128, 3865-3865.	1.4	0
103	AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood, 2015, 125, 2120-2130.	1.4	227
104	Stem cell in cancer: Do they matter?. Experimental Hematology, 2015, 43, S34.	0.4	0
105	Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia. Cancer Cell, 2015, 27, 864-876.	16.8	265
106	Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts. Leukemia, 2015, 29, 177-187.	7.2	23
107	CDK6 Levels Regulate Quiescence Exit in Human Hematopoietic Stem Cells. Cell Stem Cell, 2015, 16, 302-313.	11.1	247
108	AGS67E, an Anti-CD37 Monomethyl Auristatin E Antibody–Drug Conjugate as a Potential Therapeutic for B/T-Cell Malignancies and AML: A New Role for CD37 in AML. Molecular Cancer Therapeutics, 2015, 14, 1650-1660.	4.1	72

#	Article	IF	CITATIONS
109	Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Oncogene, 2015, 34, 1843-1852.	5.9	40
110	Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 343-356.	16.8	145
111	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	16.8	90
112	AGS62P1, a Novel Anti-FLT3 Antibody Drug Conjugate, Employing Site Specific Conjugation, Demonstrates Preclinical Anti-Tumor Efficacy in AML Tumor and Patient Derived Xenografts. Blood, 2015, 126, 3806-3806.	1.4	15
113	Mir-125a Confers Multi-Lineage Long-Term Repopulating Stem Cell Activity to Human Hematopoietic Committed Progenitors. Blood, 2015, 126, 900-900.	1.4	1
114	The Human Blood Hierarchy Is Shaped By Distinct Progenitor Lineages Across Development. Blood, 2015, 126, 2360-2360.	1.4	0
115	Distinct Regulatory Networks Govern Human Hematopoietic Stem Cell Across Development. Blood, 2015, 126, 2375-2375.	1.4	0
116	Identification of Existing Bioactive Compounds That Target Acute Myeloid Leukemia Stem Cells. Blood, 2015, 126, 3681-3681.	1.4	2
117	Genomic Landscape of Relapsed Acute Lymphoblastic Leukemia. Blood, 2015, 126, 692-692.	1.4	3
118	On the Origins of AML Relapse. Blood, 2015, 126, 223-223.	1.4	0
119	G Protein-Coupled Receptor 56 As a Potential Regulator of Normal and Leukemic Stem Cells. Blood, 2015, 126, 4267-4267.	1.4	0
120	Efficacy and Safety of Allogeneic Double Negative T Cell As a Cellular Therapy for AML and Its Underlying Mechanism. Blood, 2015, 126, 1355-1355.	1.4	0
121	Tumor Archaeology: Tracking Leukemic Evolution to Its Origins. Science Translational Medicine, 2014, 6, 238fs23.	12.4	8
122	Identification of genes expressed by immune cells of the colon that are regulated by colorectal cancerâ€associated variants. International Journal of Cancer, 2014, 134, 2330-2341.	5.1	38
123	Evolution of the Cancer Stem Cell Model. Cell Stem Cell, 2014, 14, 275-291.	11.1	1,825
124	Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature, 2014, 506, 328-333.	27.8	1,241
125	The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature, 2014, 510, 268-272.	27.8	292
126	Self-renewal as a therapeutic target in human colorectal cancer. Nature Medicine, 2014, 20, 29-36.	30.7	438

#	Article	IF	CITATIONS
127	The evolution of cellular deficiency in GATA2 mutation. Blood, 2014, 123, 863-874.	1.4	189
128	Intercellular network structure and regulatory motifs in the human hematopoietic system. Molecular Systems Biology, 2014, 10, 741.	7.2	57
129	Evolving heterogeneity in acute lymphoblastic leukemia. Experimental Hematology, 2014, 42, S31.	0.4	0
130	Identification and characterization of therapy resistance determinants in leukemia. Experimental Hematology, 2014, 42, S51.	0.4	0
131	Reduced Lymphoid Lineage Priming Promotes Human Hematopoietic Stem Cell Expansion. Cell Stem Cell, 2014, 14, 94-106.	11.1	63
132	Engraftment Patterns in NOD.SCID Mice Predict Outcome in Human AML. Blood, 2014, 124, 16-16.	1.4	1
133	Modeling the Multi-Step Pathogenesis of Acute Myeloid Leukemia of Down Syndrome. Blood, 2014, 124, 3579-3579.	1.4	0
134	Variable Clonal Repopulation Dynamics Influence Chemotherapy Response in Colorectal Cancer. Science, 2013, 339, 543-548.	12.6	691
135	The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nature Immunology, 2013, 14, 756-763.	14.5	188
136	Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20599-20604.	7.1	15
137	Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. Journal of Clinical Investigation, 2013, 123, 315-328.	8.2	117
138	Defining Functional Heterogeneity In Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1365-1365.	1.4	3
139	Mir-126 Governs Human Leukemia Stem Cell Quiescence and Chemotherapy Resistance. Blood, 2013, 122, 1647-1647.	1.4	1
140	High Content Screening Identifies Synthetic Lethality Of Retinoid Receptor Agonists In IKZF1-Mutated BCR-ABL1 positive Acute Lymphoblastic Leukemia. Blood, 2013, 122, 172-172.	1.4	2
141	DNMT3a Mutations Define a Pre-Leukemic Stem Cell Reservoir In Human Acute Myeloid Leukemia. Blood, 2013, 122, 487-487.	1.4	4
142	Leukemic Engraftment In NOD.SCID Mice Is Correlated With Clinical Parameters and Predicts Outcome In Human AML. Blood, 2013, 122, 50-50.	1.4	4
143	Enforced Expression Of Mir-125b Promotes the in vivo expansion Of Human Linneg cord Blood Multi-Lymphoid Progenitors and Leukemia Stem Cells. Blood, 2013, 122, 1648-1648.	1.4	0
144	A Mechanistic Role For Mir-126, a Hematopoietic Stem Cell Microrna, In Acute Leukemias. Blood, 2013, 122, 886-886.	1.4	1

#	Article	IF	CITATIONS
145	Functional and Phenotypic Characterization Of Acute Myeloid Leukemia By Analysis Of Diagnostic/Relapse Paired Samples. Blood, 2013, 122, 2595-2595.	1.4	0
146	A small molecule screening strategy with validation on human leukemia stem cells uncovers the therapeutic efficacy of kinetin riboside. Blood, 2012, 119, 1200-1207.	1.4	36
147	Molecular and functional characterization of early human hematopoiesis. Annals of the New York Academy of Sciences, 2012, 1266, 68-71.	3.8	16
148	Preface for Hematopoietic Stem Cells VIII. Annals of the New York Academy of Sciences, 2012, 1266, vii-vii.	3.8	0
149	Hematopoiesis: A Human Perspective. Cell Stem Cell, 2012, 10, 120-136.	11.1	679
150	Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. Journal of Experimental Medicine, 2012, 209, 1883-1899.	8.5	121
151	Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nature Communications, 2012, 3, 1288.	12.8	247
152	Attenuation of miR-126 Activity Expands HSC InÂVivo without Exhaustion. Cell Stem Cell, 2012, 11, 799-811.	11.1	197
153	The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 2012, 481, 157-163.	27.8	1,430
154	Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nature Medicine, 2012, 18, 605-611.	30.7	584
155	ID1 and ID3 Regulate the Self-Renewal Capacity ofÂHuman Colon Cancer-Initiating Cells through p21. Cancer Cell, 2012, 21, 777-792.	16.8	193
156	A Highly Selective Anti-ROR1 Monoclonal Antibody Inhibits Human Acute Myeloid Leukemia CD34+ Cell Survival and Self-Renewal Blood, 2012, 120, 2560-2560.	1.4	2
157	Human Solid Tumor Xenografts in Immunodeficient Mice Are Vulnerable to Lymphomagenesis Associated with Epstein-Barr Virus. PLoS ONE, 2012, 7, e39294.	2.5	71
158	Abstract 3330: Functional characterization of microRNAs identified in human acute myeloid leukemia stem cells. , 2012, , .		0
159	appropriate for gastric cancer resection? Results of a RAND/UCLA expert panelSelf-renewal as a therapeutic target in human colorectal cancerA novel hepatic parenchymal preserving technique in the management of neuroendocrine tumour liver metastases: a feasible approachInflammatory markers predict survival in liver metastases from colorectal cancerPresection of multisite metastases	1.2	0
160	from colorectal cancer: feasibl. Canadian Journal of Surgery, 2012, 55, 212-215. Hematopoietic Stem Cell Expansion, without Exhaustion or Transformation, by Stable Microrna Antagonism in Vivo. Blood, 2012, 120, 30-30.	1.4	0
161	Deep Phenotypic Characterization of Primitive Stem and Progenitor Compartments Reveals the Cellular Architecture of Aplastic Anemia Blood, 2012, 120, 2370-2370.	1.4	0
162	AML Cells Have Altered Mitochondrial Biogenesis and Low Spare Reserve Capacity in Their Respiratory Chain That Renders Them Susceptible to Oxidative Metabolic Stress Blood, 2012, 120, 2581-2581.	1.4	7

#	Article	IF	CITATIONS
163	Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment. Science, 2011, 333, 218-221.	12.6	717
164	Stem cell gene expression programs influence clinical outcome in human leukemia. Nature Medicine, 2011, 17, 1086-1093.	30.7	894
165	Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood, 2011, 117, 4253-4261.	1.4	82
166	Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia, 2011, 25, 506-514.	7.2	62
167	Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature, 2011, 469, 362-367.	27.8	421
168	Inhibition of Mitochondrial Translation as a Therapeutic Strategy for Human Acute Myeloid Leukemia. Cancer Cell, 2011, 20, 674-688.	16.8	546
169	The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. Journal of Experimental Medicine, 2011, 208, 227-234.	8.5	277
170	Auger Electron Radioimmunotherapeutic Agent Specific for the CD123 ⁺ /CD131 ^{â^'} Phenotype of the Leukemia Stem Cell Population. Journal of Nuclear Medicine, 2011, 52, 1465-1473.	5.0	40
171	Lysosomal Disruption Selectively Targets Leukemia Cells and Leukemia Stem Cells Through A Mechanism Related to Increased Reactive Oxygen Species Production. Blood, 2011, 118, 61-61.	1.4	5
172	Identification and Characterization of Human Leukemia Stem Cell Functional Regulators. Blood, 2011, 118, 2955-2955.	1.4	0
173	Genome-Wide shRNA Screen for DNA Damage Response Regulators in Human Hematopoietic Stem and Progenitor Cells. Blood, 2011, 118, 1289-1289.	1.4	0
174	Inhibition of Mitochondrial Translation As a Therapeutic Strategy for Acute Myeloid Leukemia (AML). Blood, 2011, 118, 233-233.	1.4	0
175	Efficacy of SAR302503, a JAK2 Inhibitor, in the Treatment of a Primary Xenograft Model of Human Acute Myeloid Leukemia,. Blood, 2011, 118, 3624-3624.	1.4	0
176	Comparing Human Fetal Liver, Cord Blood and Adult Bone Marrow Stem/Progenitor Hematopoietic Cells As Cells of Origin of Human MLL Leukemias. Blood, 2011, 118, 2956-2956.	1.4	0
177	Molecular and Functional Characterization of Early Lineage Commitment of Human Hematopoietic Stem Cells. Blood, 2011, 118, 907-907.	1.4	1
178	Discovery of Novel Recurrent Mutations in Childhood Early T-Cell Precursor Acute Lymphoblastic Leukemia by Whole Genome Sequencing - a Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 68-68.	1.4	0
179	Histone H3 Methylation Mediates All-Trans-Retinoic Acid Responsiveness in Acute Myeloid Leukemia. Blood, 2011, 118, 224-224.	1.4	0
180	Engraftment of human hematopoietic stem cells is more efficient in female NOD/SCID/IL-2Rgc-null recipients. Blood, 2010, 115, 3704-3707.	1.4	118

#	Article	IF	CITATIONS
181	Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood, 2010, 116, 193-200.	1.4	248
182	Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood, 2010, 116, 5268-5279.	1.4	94
183	Functional differences between myeloid leukemia-initiating and transient leukemia cells in Down's syndrome. Leukemia, 2010, 24, 1012-1017.	7.2	11
184	Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nature Immunology, 2010, 11, 585-593.	14.5	430
185	Identification of Hematopoietic Stem Cell–Specific miRNAs Enables Gene Therapy of Globoid Cell Leukodystrophy. Science Translational Medicine, 2010, 2, 58ra84.	12.4	180
186	Bone Marrow-derived Human Hematopoietic Stem Cells Engraft NOD/SCID Mice and Traffic Appropriately to an Inflammatory Stimulus in the Joint. Journal of Rheumatology, 2010, 37, 496-502.	2.0	10
187	A Distinctive DNA Damage Response in Human Hematopoietic Stem Cells Reveals an Apoptosis-Independent Role for p53 in Self-Renewal. Cell Stem Cell, 2010, 7, 186-197.	11.1	243
188	Liver Fibrosis In Myeloid Leukemia of Down Syndrome. Blood, 2010, 116, 874-874.	1.4	0
189	Identification and Function of Hematopoietic Stem and Progenitor Cell Specific Micrornas Blood, 2010, 116, 2631-2631.	1.4	0
190	Evolution of Human BCR-ABL1 lymphoblastic Leukaemia-Initiating Cells Blood, 2010, 116, 1023-1023.	1.4	0
191	Acute Myeloid Leukemia Stem Cells Escape Innate Immune Surveillance by Macrophages through Interaction with SIRPα. Blood, 2010, 116, 499-499.	1.4	0
192	Enriched MicroRNA-126 Bioactivity Marks the Primitive Compartment In AML and Regulates LSC Numbers. Blood, 2010, 116, 94-94.	1.4	1
193	MicroSPECT/CT Imaging of Human Leukemia Engraftment In NOD-Scid Mice Using [111In]-Labeled 7G3 Anti-CD123 Antibodies. Blood, 2010, 116, 968-968.	1.4	0
194	PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes and Development, 2009, 23, 2076-2087.	5.9	87
195	Cancer Stem Cells in Solid Tumors: An Overview. Seminars in Radiation Oncology, 2009, 19, 71-77.	2.2	152
196	Looking ahead in cancer stem cell research. Nature Biotechnology, 2009, 27, 44-46.	17.5	193
197	The Role of PLZF in Human Myeloid Development. Annals of the New York Academy of Sciences, 2009, 1176, 150-153.	3.8	14
198	Monoclonal Antibody-Mediated Targeting of CD123, IL-3 Receptor α Chain, Eliminates Human Acute Myeloid Leukemic Stem Cells. Cell Stem Cell, 2009, 5, 31-42.	11.1	499

#	Article	IF	CITATIONS
199	Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood, 2009, 114, 3064-3073.	1.4	151
200	Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2009, 81, 6813-6822.	6.5	1,121
201	Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood, 2009, 114, 972-982.	1.4	125
202	Comprehensive genomic screens identify a role for PLZF-RARα as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood, 2009, 114, 5499-5511.	1.4	53
203	Modulation of Histone H3K4 and H3K27 Methylation Levels Via Pharmacological Inhibition of LSD1 and Degradation of the EZH2-Containing Polycomb Repressive Complex 2 Stimulates ATRA-Mediated Differentiation of AML Cells Blood, 2009, 114, 1046-1046.	1.4	15
204	Clonal Analysis of the Human Hematopoietic Hierarchy Reveals An Early Lymphoid Progenitor with Extensive Monocytic Potential Blood, 2009, 114, 1503-1503.	1.4	0
205	Identification of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment and Self-Renewal Blood, 2009, 114, 816-816.	1.4	5
206	CD47-Sirpα Interaction Modulates Homing and Engraftment of Human Acute Myeloid Leukemia Stem Cells in Mice Blood, 2009, 114, 476-476.	1.4	0
207	Leukemic and Normal Stem Cell Transcriptional Signatures Determined by Functional Assays Are Predictive of the Overall Survival of AML Patients Blood, 2009, 114, 389-389.	1.4	0
208	Stem cell concepts renew cancer research. Blood, 2008, 112, 4793-4807.	1.4	921
209	Enhanced alternative splicing of the FLVCR1 gene in Diamond Blackfan anemia disrupts FLVCR1 expression and function that are critical for erythropoiesis. Haematologica, 2008, 93, 1617-1626.	3.5	46
210	Comprehensive Genomic Screens Reveal Multiple Modes of Action of the PLZF-RAR-α Oncoprotein. Blood, 2008, 112, 686-686.	1.4	0
211	Human SIRPA Polymorphism Modulates Macrophage-Mediated Suppression of Human Hematopoiesis. Blood, 2008, 112, 3485-3485.	1.4	0
212	High Levels of MicroRNA-126 Bioactivity Specify the LSC Compartment in AML. Blood, 2008, 112, 510-510.	1.4	0
213	Comment on "Tumor Growth Need Not Be Driven by Rare Cancer Stem Cells". Science, 2007, 318, 1722-1722.	12.6	95
214	Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Linâ^'CD34+CD38â^' population. Blood, 2007, 109, 543-545.	1.4	82
215	Modeling the Initiation and Progression of Human Acute Leukemia in Mice. Science, 2007, 316, 600-604.	12.6	317
216	Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nature Immunology, 2007, 8, 1313-1323.	14.5	436

#	Article	IF	CITATIONS
217	A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007, 445, 106-110.	27.8	3,765
218	Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells. Experimental Hematology, 2007, 35, 1429-1436.	0.4	42
219	CD123 (IL-3 Receptor α Chain) Neutralization by a Monoclonal Antibody Selectively Eliminates Human Acute Myeloid Leukemic Stem Cells Blood, 2007, 110, 161-161.	1.4	5
220	Leukemia-Initiating Cells in Acute Megakaryoblastic Leukemia and Transient Leukemia of Down Syndrome Blood, 2007, 110, 3377-3377.	1.4	0
221	Identification of a New Genetic Determinant Controlling Human Hematopoietic Stem Cell Engraftment Blood, 2007, 110, 175-175.	1.4	0
222	Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nature Immunology, 2006, 7, 1225-1233.	14.5	158
223	Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 2006, 12, 1167-1174.	30.7	1,127
224	Identification of human colon cancer initiating cells. Journal of the American College of Surgeons, 2006, 203, S82.	0.5	0
225	Multiple cellular antigen detection by ICP-MS. Journal of Immunological Methods, 2006, 308, 68-76.	1.4	140
226	Expression of TEL-JAK2 in primary human hematopoietic cells drives erythropoietin-independent erythropoiesis and induces myelofibrosis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16930-16935.	7.1	32
227	Expression of MLL Fusion Genes in Human Hematopoietic Cells Is Sufficient To Induce Both Acute Lymphoid and Acute Myeloid Leukemia In Vivo Blood, 2006, 108, 239-239.	1.4	13
228	Multiplex Biomarker Detection by ICPâ€MS. FASEB Journal, 2006, 20, A100.	0.5	4
229	LMO2 and TAL1 Cooperate in a Model of Human Tâ^'Cell Leukemogenesis Blood, 2006, 108, 773-773.	1.4	2
230	Mouse Model for Shwachman-Diamond Syndrome with the R126T Disease Mutation Leads to Severe Growth and Developmental Deficiencies with Impairment of Hematopoiesis Blood, 2006, 108, 1283-1283.	1.4	1
231	Messenger RNA Detection in Leukemia Cell lines by Novel Metal-Tagged in situ Hybridization using Inductively Coupled Plasma Mass Spectrometry. Translational Oncogenomics, 2006, 1, 1-9.	1.7	12
232	Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. Journal of Nuclear Medicine, 2006, 47, 827-36.	5.0	69
233	Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood, 2005, 106, 1259-1261.	1.4	131
234	Acute Myeloid Leukemia Stem Cells. Annals of the New York Academy of Sciences, 2005, 1044, 1-5.	3.8	148

#	Article	IF	CITATIONS
235	Biology of Normal and Acute Myeloid Leukemia Stem Cells. International Journal of Hematology, 2005, 82, 389-396.	1.6	97
236	Oncogenic potential of the transcription factor LYL1 in acute myeloblastic leukemia. Leukemia, 2005, 19, 1941-1947.	7.2	37
237	Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia, 2005, 19, 1794-1805.	7.2	102
238	Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Experimental Hematology, 2005, 33, 1229-1239.	0.4	59
239	Cancer stem cells: lessons from leukemia. Trends in Cell Biology, 2005, 15, 494-501.	7.9	551
240	Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. Journal of Experimental Medicine, 2005, 201, 1603-1614.	8.5	290
241	Dissociation of telomerase activity and telomere length maintenance in primitive human hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14398-14403.	7.1	59
242	Problems with Co-Funding in Canada. Science, 2005, 308, 1867b-1867b.	12.6	6
243	Complexity of the human acute myeloid leukemia stem cell compartment: Implications for therapy. Biology of Blood and Marrow Transplantation, 2005, 11, 9-11.	2.0	10
244	MicroRNA Expression Profiling in Sorted AML Subpopulations: A Possible Role for miR-155/BIC in Stem Cell Maintenance and Leukemogenesis Blood, 2005, 106, 466-466.	1.4	3
245	The First Fully Experimental In Vivo Model of Human Leukemogenesis: Human Hematopoietic Stem Cells Infected with MLL-ENL Induce Pro-B Acute Lymphoblastic Leukemia in NOD/SCID Mice Blood, 2005, 106, 238-238.	1.4	0
246	Activated JAK2 Signaling in Primary Human Hematopoietic Cells Drives Erythropoietin-Independent Erythropoiesis and Myelofibrosis Blood, 2005, 106, 374-374.	1.4	0
247	Hematopoietic Cell Fate and the Initiation of Leukemic Properties in Primitive Primary Human Cells Are Influenced by Ras Activity and Farnesyltransferase Inhibition. Molecular and Cellular Biology, 2004, 24, 6993-7002.	2.3	37
248	Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunology, 2004, 5, 738-743.	14.5	871
249	Concepts of human leukemic development. Oncogene, 2004, 23, 7164-7177.	5.9	207
250	Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood, 2004, 103, 545-552.	1.4	140
251	Development of a Novel NOD/SCID Transplant System That Provides Enhanced Detection of Rapid-SRC and Insight into Their Self-Renewal and Mobilization Blood, 2004, 104, 249-249.	1.4	7

#	Article	IF	CITATIONS
253	SRC within the Lin-CD34+CD38+/Lo Population Possess Heterogeneous Migration, Repopulation, and Self-Renewal Potential Blood, 2004, 104, 2670-2670.	1.4	0
254	Human acute myeloid leukemia stem cells. Archives of Medical Research, 2003, 34, 507-514.	3.3	90
255	Self-renewal writ in blood. Nature, 2003, 423, 231-232.	27.8	105
256	Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nature Medicine, 2003, 9, 959-963.	30.7	264
257	Characterization of Cord Blood Hematopoietic Stem Cells. Annals of the New York Academy of Sciences, 2003, 996, 67-71.	3.8	22
258	Breast cancer stem cells revealed. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3547-3549.	7.1	305
259	Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A–null mice. Blood, 2003, 101, 517-523.	1.4	168
260	Stem cells take a shortcut to the bone marrow. Blood, 2003, 101, 2901-2901.	1.4	5
261	Short-term granulocyte colony-stimulating factor and erythropoietin treatment enhances hematopoiesis and survival in the mitomycin C–conditioned Fanccâ"/â^ mouse model, while long-term treatment is ineffective. Blood, 2002, 100, 1499-1501.	1.4	9
262	Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nature Immunology, 2001, 2, 75-82.	14.5	305
263	Acute Myeloid Leukemia. Hematology American Society of Hematology Education Program, 2001, 2001, 62-86.	2.5	95
264	<i>In Vivo</i> Dynamics of Human Stem Cell Repopulation in NOD/SCID Mice. Annals of the New York Academy of Sciences, 2001, 938, 184-190.	3.8	19
265	Gene therapy turns the corner. Nature Medicine, 2000, 6, 624-626.	30.7	21
266	Expansion of human cord blood CD34+CD38â^'cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood, 2000, 95, 102-110.	1.4	243
267	Transduction of Human CD34+CD38- Bone Marrow and Cord Blood-Derived SCID-Repopulating Cells with Third-Generation Lentiviral Vectors. Molecular Therapy, 2000, 1, 566-573.	8.2	180
268	Expansion of human cord blood CD34+CD38â^'cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood, 2000, 95, 102-110.	1.4	3
269	Normal and Leukemic Human Stem Cells. , 2000, , 25-36.		0
270	CD8 ⁺ minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8639-8644.	7.1	199

#	Article	IF	CITATIONS
271	Bone Morphogenetic Proteins Regulate the Developmental Program of Human Hematopoietic Stem Cells. Journal of Experimental Medicine, 1999, 189, 1139-1148.	8.5	354
272	Absence of CD34 on Some Human SCID-Repopulating Cells. Annals of the New York Academy of Sciences, 1999, 872, 211-219.	3.8	12
273	Characterization and retroviral transduction of an early human lymphomyeloid precursor assayed in nonswitched long-term culture on murine stroma. Experimental Hematology, 1999, 27, 1097-1106.	0.4	18
274	Hematopoietic compartment of Fanconi anemia group C null mice contains fewer lineage-negative CD34+ primitive hematopoietic cells and shows reduced reconstitution ability. Experimental Hematology, 1999, 27, 1667-1674.	0.4	52
275	A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nature Medicine, 1998, 4, 1038-1045.	30.7	595
276	Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8239-8244.	7.1	73
277	Purification and Characterization of a Cell Initiating Human Acute Leukemia after Transplantation into NOD-SCID Mice. Leukemia and Lymphoma, 1998, 30, 47-48.	1.3	0
278	Treatment of Non-Obese Diabetic (NOD)/Severe-Combined Immunodeficient Mice (SCID) With flt3 Ligand and Interleukin-7 Impairs the B-Lineage Commitment of Repopulating Cells After Transplantation of Human Hematopoietic Cells. Blood, 1998, 92, 2024-2031.	1.4	21
279	Bone Marrow Failure in the Fanconi Anemia Group C Mouse Model After DNA Damage. Blood, 1998, 91, 2737-2744.	1.4	73
280	Treatment of Non-Obese Diabetic (NOD)/Severe-Combined Immunodeficient Mice (SCID) With flt3 Ligand and Interleukin-7 Impairs the B-Lineage Commitment of Repopulating Cells After Transplantation of Human Hematopoietic Cells. Blood, 1998, 92, 2024-2031.	1.4	3
281	Quantitative Analysis Reveals Expansion of Human Hematopoietic Repopulating Cells After Short-term Ex Vivo Culture. Journal of Experimental Medicine, 1997, 186, 619-624.	8.5	394
282	Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5320-5325.	7.1	794
283	Primitive Human Hematopoietic Cells Are Enriched in Cord Blood Compared With Adult Bone Marrow or Mobilized Peripheral Blood as Measured by the Quantitative In Vivo SCID-Repopulating Cell Assay. Blood, 1997, 89, 3919-3924.	1.4	434
284	Kinetic Evidence of the Regeneration of Multilineage Hematopoiesis From Primitive Cells in Normal Human Bone Marrow Transplanted Into Immunodeficient Mice. Blood, 1997, 89, 4307-4316.	1.4	228
285	Engraftment and Development of Human CD34+-Enriched Cells From Umbilical Cord Blood in NOD/LtSz-scid/scid Mice. Blood, 1997, 90, 85-96.	1.4	197
286	Differential Maintenance of Primitive Human SCID-Repopulating Cells, Clonogenic Progenitors, and Long-Term Culture-Initiating Cells After Incubation on Human Bone Marrow Stromal Cells. Blood, 1997, 90, 641-650.	1.4	149
287	Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 1997, 3, 730-737.	30.7	6,150
288	Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells, 1997, 15, 199-207.	3.2	174

#	Article	IF	CITATIONS
289	Engraftment and Development of Human CD34+-Enriched Cells From Umbilical Cord Blood in NOD/LtSz-scid/scid Mice. Blood, 1997, 90, 85-96.	1.4	6
290	Differential Maintenance of Primitive Human SCID-Repopulating Cells, Clonogenic Progenitors, and Long-Term Culture-Initiating Cells After Incubation on Human Bone Marrow Stromal Cells. Blood, 1997, 90, 641-650.	1.4	5
291	Normal and leukemic human stem cells assayed in SCID mice. Seminars in Immunology, 1996, 8, 197-206.	5.6	148
292	Human stem cell assays in immune-deficient mice. Current Opinion in Hematology, 1996, 3, 405-409.	2.5	25
293	Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nature Genetics, 1996, 12, 448-451.	21.4	241
294	Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nature Medicine, 1996, 2, 1329-1337.	30.7	765
295	Engraftment of immune-deficient mice with primitive hematopoietic cells from β-thalassemia and sickle cell anemia patients: implications for evaluating human gene therapy protocols. Human Molecular Genetics, 1995, 4, 163-172.	2.9	92
296	Human Hematopoiesis in SCID Mice. Medical Intelligence Unit, 1995, , 197-212.	0.2	4
297	A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367, 645-648.	27.8	4,203
298	Future prospects for animal models created by transplanting human haematopoietic cells into immune-deficient mice. Research in Immunology, 1994, 145, 380-384.	0.9	16
299	High-Level Multilineage Engraftment of Human Cord Blood Cells in SCI Mice. Stem Cells and Development, 1993, 2, 215-216.	1.0	4
300	Engraftment of human lymphoid cells into newborn SCID mice leads to graft-versushost disease. International Immunology, 1993, 5, 1509-1522.	4.0	36
301	Transplantation of Normal and Leukemic Human Bone Marrow into Immune-Deficient Mice: Development of Animal Models for Human Hematopoiesis. Immunological Reviews, 1991, 124, 25-43.	6.0	85
302	Immune-Deficient Mice as Models for Human Hematopoietic Disease. , 1991, 1, 77-115.		6
303	A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science, 1989, 246, 1597-1600.	12.6	246
304	Establishment of Assays for Human Hematopoietic Cells in Immune Deficient Mice. Current Topics in Microbiology and Immunology, 1989, 152, 219-224.	1.1	6
305	Genetic Manipulation of Human Hematopoietic Stem Cells. , 1989, , 209-219.		0
306	Modulation of gene expression in multiple hematopoietic cell lineages following retroviral vector gene transfer Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 789-793.	7.1	91

#	Article	IF	CITATIONS
307	High efficiency gene transfer and expression in normal murine B lymphocytes. Journal of Immunological Methods, 1987, 101, 279-285.	1.4	6
308	Retrovirus-Mediated Gene Transfer into Hematopoietic Stem Cells. Annals of the New York Academy of Sciences, 1987, 507, 242-251.	3.8	10
309	Southern analysis on small numbers of cells. Trends in Genetics, 1987, 3, 273.	6.7	1
310	Expression of human adenosine deaminase in murine haematopoietic progenitor cells following retroviral transfer. Nature, 1986, 322, 385-387.	27.8	80
311	Genetic manipulation of hematopoietic stem cells with retrovirus vectors. Trends in Genetics, 1986, 2, 165-170.	6.7	29
312	Ribonucleotide reductase activity during the senescence of normal human diploid fibroblasts in culture. Mechanisms of Ageing and Development, 1985, 32, 85-97.	4.6	2
313	Membrane glycoprotein changes during the senescence of normal human diploid fibroblasts in culture. Mechanisms of Ageing and Development, 1985, 30, 273-283.	4.6	22
314	Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell, 1985, 42, 71-79.	28.9	655
315	On the importance of deoxyribonucleotide pools in the senescence of cultured human diploid fibroblasts. FEBS Letters, 1985, 179, 21-24.	2.8	7
316	Gene Transfer with Retrovirus Vectors. , 1985, , 235-261.		13
317	Human diploid fibroblasts with alterations in ribonucleotide reductase activity, deoxyribonucleotide pools and in vitro lifespan. Mechanisms of Ageing and Development, 1984, 26, 37-49.	4.6	7
318	Involvement of ribonucleotide reductase activity in the senescence of normal human diploid fibroblasts. Mechanisms of Ageing and Development, 1982, 20, 103-109.	4.6	15
319	Studies of mammalian ribonucleotide reductase activity in intact permeabilized cells: A genetic approach. Advances in Enzyme Regulation, 1981, 19, 105-127.	2.6	20
320	Ribonucleotide reduction in intact human diploid fibroblasts. Journal of Cellular Physiology, 1980, 105, 63-72.	4.1	19