
Megan M Proulx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6952895/publications.pdf Version: 2024-02-01

MECAN M PROLLEX

#	Article	IF	CITATIONS
1	Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. ELife, 2022, 11, .	6.0	44
2	Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201632119.	7.1	20
3	Distinct Bacterial Pathways Influence the Efficacy of Antibiotics against Mycobacterium tuberculosis. MSystems, 2020, 5, .	3.8	37
4	Yersinia pestis escapes entrapment in thrombi by targeting platelet function. Journal of Thrombosis and Haemostasis, 2020, 18, 3236-3248.	3.8	6
5	Redundant and Cooperative Roles for Yersinia pestis Yop Effectors in the Inhibition of Human Neutrophil Exocytic Responses Revealed by Gain-of-Function Approach. Infection and Immunity, 2020, 88, .	2.2	9
6	Common Variants in the Glycerol Kinase Gene Reduce Tuberculosis Drug Efficacy. MBio, 2019, 10, .	4.1	80
7	Large-scale chemical–genetics yields new M. tuberculosis inhibitor classes. Nature, 2019, 571, 72-78.	27.8	119
8	Functionally Overlapping Variants Control Tuberculosis Susceptibility in Collaborative Cross Mice. MBio, 2019, 10, .	4.1	36
9	Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. Science, 2018, 362, 1064-1069.	12.6	639
10	Gain-of-Function Analysis Reveals Important Virulence Roles for the Yersinia pestis Type III Secretion System Effectors YopJ, YopT, and YpkA. Infection and Immunity, 2018, 86, .	2.2	10
11	Reply to Gelfand and Cleveland. Journal of Infectious Diseases, 2016, 213, 1671.2-1672.	4.0	0
12	Tuberculosis Susceptibility and Vaccine Protection Are Independently Controlled by Host Genotype. MBio, 2016, 7, .	4.1	116
13	Manipulation of Interleukin-1β and Interleukin-18 Production by Yersinia pestis Effectors YopJ and YopM and Redundant Impact on Virulence. Journal of Biological Chemistry, 2016, 291, 9894-9905.	3.4	33
14	Reversion From Methicillin Susceptibility to Methicillin Resistance in <i>Staphylococcus aureus</i> During Treatment of Bacteremia. Journal of Infectious Diseases, 2016, 213, 1041-1048.	4.0	23
15	The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation. PLoS Pathogens, 2016, 12, e1006035.	4.7	98
16	Genome-Wide Mutant Fitness Profiling Identifies Nutritional Requirements for Optimal Growth of Yersinia pestis in Deep Tissue. MBio, 2014, 5, .	4.1	54
17	Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7391-7396.	7.1	250
18	The NLRP12 Inflammasome Recognizes Yersinia pestis. Immunity, 2012, 37, 96-107.	14.3	293

#	Article	IF	CITATIONS
19	Fibrin microthreads support mesenchymal stem cell growth while maintaining differentiation potential. Journal of Biomedical Materials Research - Part A, 2011, 96A, 301-312.	4.0	43