
J Julian Blow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6952777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DDK: The Outsourced Kinase of Chromosome Maintenance. Biology, 2022, 11, 877.	1.3	7
2	The role of DDK and Treslin–MTBP in coordinating replication licensing and pre-initiation complex formation. Open Biology, 2021, 11, 210121.	1.5	15
3	Development of BromoTag: A "Bump-and-Holeâ€â€"PROTAC System to Induce Potent, Rapid, and Selective Degradation of Tagged Target Proteins. Journal of Medicinal Chemistry, 2021, 64, 15477-15502.	2.9	37
4	3 tera-basepairs as a fundamental limit for robust DNA replication. Physical Biology, 2020, 17, 046002.	0.8	1
5	Defects in the origin licensing checkpoint stresses cells exiting G0. Journal of Cell Biology, 2019, 218, 2080-2081.	2.3	8
6	Lgr5+ intestinal stem cells reside in an unlicensed G1 phase. Journal of Cell Biology, 2018, 217, 1667-1685.	2.3	43
7	The Anthelmintic Drug Niclosamide and Its Analogues Activate the Parkinson's Disease Associated Protein Kinase PINK1. ChemBioChem, 2018, 19, 425-429.	1.3	51
8	Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing. Nature Communications, 2018, 9, 3704.	5.8	83
9	Replication Licensing System. , 2018, , 1-6.		Ο
10	Replication Licensing System. , 2018, , 1-6.		0
11	Reversal of DDK-Mediated MCM Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability Independently of ATR/Chk1. Cell Reports, 2017, 18, 2508-2520.	2.9	98
12	The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines. Cell Chemical Biology, 2017, 24, 981-992.e4.	2.5	16
13	Xenopus cell-free extracts and their contribution to the study of DNA replication and other complex biological processes. International Journal of Developmental Biology, 2016, 60, 201-207.	0.3	17
14	The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis. PLoS Genetics, 2016, 12, e1005872.	1.5	38
15	Direct non transcriptional role of NF-Y in DNA replication. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 673-685.	1.9	13
16	Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5757-64.	3.3	111
17	Xenopus Mcm10 is a CDK-substrate required for replication fork stability. Cell Cycle, 2016, 15, 2183-2195.	1.3	23
18	Inevitability and containment of replication errors for eukaryotic genome lengths spanning megabase to gigabase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5765-74.	3.3	33

#	Article	IF	CITATIONS
19	The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Reports, 2016, 15, 724-734.	2.9	8
20	Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nature Cell Biology, 2016, 18, 777-789.	4.6	244
21	Ubiquitinated Fancd2 recruits Fan1 to stalled replication forks to prevent genome instability. Science, 2016, 351, 846-849.	6.0	102
22	Cell Cycle Synchronization in Xenopus Egg Extracts. Methods in Molecular Biology, 2016, 1342, 101-147.	0.4	8
23	Both Chromosome Decondensation and Condensation Are Dependent on DNA Replication in C.Âelegans Embryos. Cell Reports, 2015, 12, 405-417.	2.9	31
24	Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans. Nature Communications, 2014, 5, 5485.	5.8	51
25	The contribution of dormant origins to genome stability: From cell biology to human genetics. DNA Repair, 2014, 19, 182-189.	1.3	99
26	<i>Xenopus</i> Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biology, 2014, 4, 130138.	1.5	31
27	Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks. ELife, 2014, 3, e02863.	2.8	31
28	Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes and Development, 2013, 27, 2537-2542.	2.7	80
29	PHD1 Links Cell-Cycle Progression to Oxygen Sensing through Hydroxylation of the Centrosomal Protein Cep192. Developmental Cell, 2013, 26, 381-392.	3.1	74
30	Kinetochores Coordinate Pericentromeric Cohesion and Early DNA Replication by Cdc7-Dbf4 Kinase Recruitment. Molecular Cell, 2013, 50, 661-674.	4.5	140
31	The Geminin and Idas Coiled Coils Preferentially Form a Heterodimer That Inhibits Geminin Function in DNA Replication Licensing. Journal of Biological Chemistry, 2013, 288, 31624-31634.	1.6	22
32	Combinatorial Regulation of Meiotic Holliday Junction Resolution in C. elegans by HIM-6 (BLM) Helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 Nucleases. PLoS Genetics, 2013, 9, e1003591.	1.5	88
33	Stochastic association of neighboring replicons creates replication factories in budding yeast. Journal of Cell Biology, 2013, 202, 1001-1012.	2.3	59
34	Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts. Nucleic Acids Research, 2013, 41, 9705-9718.	6.5	51
35	Mcm8 and Mcm9 form a dimeric complex in <i>Xenopus laevis</i> egg extract that is not essential for DNA replication initiation. Cell Cycle, 2013, 12, 1225-1232.	1.3	30
36	Re-replication induced by geminin depletion occurs from G2 and is enhanced by checkpoint activation. Journal of Cell Science, 2012, 125, 2436-45.	1.2	57

#	Article	IF	CITATIONS
37	Dynamic interactions of high Cdt1 and geminin levels regulate S phase in early Xenopus embryos. Development (Cambridge), 2012, 139, 63-74.	1.2	21
38	The dynamics of replication licensing in live <i>Caenorhabditis elegans</i> embryos. Journal of Cell Biology, 2012, 196, 233-246.	2.3	67
39	Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods, 2012, 57, 203-213.	1.9	71
40	Dormant Origins, the Licensing Checkpoint, and the Response to Replicative Stresses. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012955-a012955.	2.3	121
41	Optimal Placement of Origins for DNA Replication. Physical Review Letters, 2012, 108, 058101.	2.9	17
42	A Role for Dormant Origins in Tumor Suppression. Molecular Cell, 2011, 41, 495-496.	4.5	7
43	CDC-48/p97 Coordinates CDT-1 Degradation with GINS Chromatin Dissociation to Ensure Faithful DNA Replication. Molecular Cell, 2011, 44, 85-96.	4.5	88
44	How dormant origins promote complete genome replication. Trends in Biochemical Sciences, 2011, 36, 405-414.	3.7	205
45	Biphasic chromatin binding of histone chaperone FACT during eukaryotic chromatin DNA replication. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1129-1136.	1.9	10
46	Evidence for a mammalian late-G1 phase inhibitor of replication licensing distinct from geminin or Cdk activity. Nucleus, 2011, 2, 455-464.	0.6	8
47	MCM2-7 Form Double Hexamers at Licensed Origins in Xenopus Egg Extract. Journal of Biological Chemistry, 2011, 286, 11855-11864.	1.6	123
48	Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. Journal of Cell Biology, 2010, 191, 1285-1297.	2.3	184
49	Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. Journal of Cell Biology, 2010, 188, 209-221.	2.3	61
50	Histone Acetylation by HBO1 Tightens Replication Licensing. Molecular Cell, 2010, 37, 5-6.	4.5	12
51	Clusters, factories and domains. Cell Cycle, 2010, 9, 3238-3246.	1.3	44
52	Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19807-19812.	3.3	67
53	The licensing checkpoint opens up. Cell Cycle, 2009, 8, 2319-2323.	1.3	5
54	A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Reports, 2009, 10, 406-412.	2.0	94

#	Article	IF	CITATIONS
55	The licensing checkpoint opens up. Cell Cycle, 2009, 8, 2320-2.	1.3	13
56	Replication licensing and cancer — a fatal entanglement?. Nature Reviews Cancer, 2008, 8, 799-806.	12.8	216
57	Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Experimental Cell Research, 2008, 314, 2634-2642.	1.2	76
58	Temporal Profiling of the Chromatin Proteome Reveals System-wide Responses to Replication Inhibition. Current Biology, 2008, 18, 838-843.	1.8	36
59	PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. DNA Repair, 2008, 7, 775-787.	1.3	35
60	Replication forks, chromatin loops and dormant replication origins. Genome Biology, 2008, 9, 244.	13.9	13
61	Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes and Development, 2007, 21, 3331-3341.	2.7	493
62	Bod1, a novel kinetochore protein required for chromosome biorientation. Journal of Cell Biology, 2007, 179, 187-197.	2.3	49
63	The elusive determinants of replication origins. EMBO Reports, 2007, 8, 332-334.	2.0	22
64	ELYS/MEL-28 Chromatin Association Coordinates Nuclear Pore Complex Assembly and Replication Licensing. Current Biology, 2007, 17, 1657-1662.	1.8	132
65	Live-Cell Imaging Reveals Replication of Individual Replicons in Eukaryotic Replication Factories. Cell, 2006, 125, 1297-1308.	13.5	186
66	Deregulated Replication Licensing Causes DNA Fragmentation Consistent with Head-to-Tail Fork Collision. Molecular Cell, 2006, 24, 433-443.	4.5	128
67	Regulating the licensing of DNA replication origins in metazoa. Current Opinion in Cell Biology, 2006, 18, 231-239.	2.6	163
68	Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. Journal of Cell Biology, 2006, 173, 673-683.	2.3	327
69	Preventing re-replication of chromosomal DNA. Nature Reviews Molecular Cell Biology, 2005, 6, 476-486.	16.1	601
70	Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO Journal, 2005, 24, 395-404.	3.5	128
71	The chromosome cycle: coordinating replication and segregation. EMBO Reports, 2005, 6, 1028-1034.	2.0	51
72	Functional domains of the Xenopus replication licensing factor Cdt1. Nucleic Acids Research, 2005, 33, 316-324.	6.5	59

#	Article	IF	CITATIONS
73	The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription. Nucleic Acids Research, 2005, 33, 2410-2420.	6.5	48
74	Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. Journal of Cell Science, 2004, 117, 6019-6030.	1.2	79
75	The role of Cdc6 in ensuring complete genome licensing and S phase checkpoint activation. Journal of Cell Biology, 2004, 165, 181-190.	2.3	115
76	DNA replication licensing in somatic and germ cells. Journal of Cell Science, 2004, 117, 5875-5886.	1.2	67
77	Negative Regulation of Geminin by CDK-Dependent Ubiquitination Controls Replication Licensing. Cell Cycle, 2004, 3, 441-443.	1.3	9
78	Non-proteolytic inactivation of geminin requires CDK-dependent ubiquitination. Nature Cell Biology, 2004, 6, 260-267.	4.6	69
79	A Xenopus Dbf4 homolog is required for Cdc7 chromatin binding and DNA replication. BMC Molecular Biology, 2004, 5, 5.	3.0	27
80	Optimisation of the two-dimensional gel electrophoresis protocol using the Taguchi approach. Proteome Science, 2004, 2, 6.	0.7	54
81	Negative regulation of geminin by CDK-dependent ubiquitination controls replication licensing. Cell Cycle, 2004, 3, 443-5.	1.3	6
82	Degradation ensures integrity. Nature, 2003, 423, 818-819.	13.7	1
83	A New Role for Ran in Ensuring Precise Duplication of Chromosomal DNA. Cell, 2003, 113, 2-4.	13.5	3
84	The role of the replication licensing system in cell proliferation and cancer. Progress in Cell Cycle Research, 2003, 5, 287-93.	0.9	13
85	Geminin Becomes Activated as an Inhibitor of Cdt1/RLF-B Following Nuclear Import. Current Biology, 2002, 12, 678-683.	1.8	96
86	Replication licensing — Origin licensing: defining the proliferative state?. Trends in Cell Biology, 2002, 12, 72-78.	3.6	239
87	Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene, 2002, 21, 6624-6632.	2.6	177
88	Mammalian nuclei become licensed for DNA replication during late telophase. Journal of Cell Science, 2002, 115, 51-59.	1.2	72
89	Mammalian nuclei become licensed for DNA replication during late telophase. Journal of Cell Science, 2002, 115, 51-9.	1.2	70
90	Use of Peptides from p21 (Waf1/Cip1) to Investigate PCNA Function in Xenopus Egg Extracts. Experimental Cell Research, 2001, 265, 242-251.	1.2	16

#	Article	IF	CITATIONS
91	Plasma lipases and lipid transfer proteins increase phospholipid but not free cholesterol transfer from lipid emulsion to high density lipoproteins. BMC Biochemistry, 2001, 2, 1.	4.4	8
92	Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC Biochemistry, 2001, 2, 15.	4.4	141
93	NEW EMBO MEMBER'S REVIEW: Control of chromosomal DNA replication in the early Xenopus embryo. EMBO Journal, 2001, 20, 3293-3297.	3.5	80
94	Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biology, 2001, 3, 107-113.	4.6	433
95	The origin of CDK regulation. Nature Cell Biology, 2001, 3, E182-E184.	4.6	43
96	DNA replication: Stable driving prevents fatal smashes. Current Biology, 2001, 11, R979-R982.	1.8	14
97	Replication Origins in XenopusEgg Extract Are 5–15 Kilobases Apart and Are Activated in Clusters That Fire at Different Times. Journal of Cell Biology, 2001, 152, 15-26.	2.3	146
98	A new check on issuing the licence. Nature, 2000, 404, 560-561.	13.7	25
99	Editorial overview. Current Opinion in Cell Biology, 2000, 12, 655-657.	2.6	1
100	The Cdc7/Dbf4 protein kinase: target of the S phase checkpoint?. EMBO Reports, 2000, 1, 319-322.	2.0	80
101	Sequential MCM/P1 Subcomplex Assembly Is Required to Form a Heterohexamer with Replication Licensing Activity. Journal of Biological Chemistry, 2000, 275, 2491-2498.	1.6	107
102	Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication. Nucleic Acids Research, 2000, 28, 472-480.	6.5	42
103	Interaction of Xenopus Cdc2·Cyclin A1 with the Origin Recognition Complex. Journal of Biological Chemistry, 2000, 275, 4239-4243.	1.6	34
104	The replication capacity of intact mammalian nuclei in Xenopus egg extracts declines with quiescence, but the residual DNA synthesis is independent of Xenopus MCM proteins. Journal of Cell Science, 2000, 113, 683-695.	1.2	31
105	Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes and Development, 2000, 14, 1528-40.	2.7	68
106	<i>Xenopus</i> Cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes and Development, 2000, 14, 1528-1540.	2.7	142
107	The replication capacity of intact mammalian nuclei in Xenopus egg extracts declines with quiescence, but the residual DNA synthesis is independent of Xenopus MCM proteins. Journal of Cell Science, 2000, 113 (Pt 4), 683-95.	1.2	16
108	Saying a firm â€~no' to DNA re-replication. Nature Cell Biology, 1999, 1, E175-E177.	4.6	9

#	Article	IF	CITATIONS
109	The RLF-B component of the replication licensing system is distinct from Cdc6 and functions after Cdc6 binds to chromatin. Current Biology, 1999, 9, 211-215.	1.8	42
110	The regulation of replication origin activation. Current Opinion in Genetics and Development, 1999, 9, 62-68.	1.5	94
111	Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. Journal of Cell Science, 1999, 112 (Pt 12), 2011-8.	1.2	83
112	The replication licensing system. Biological Chemistry, 1998, 379, 941-9.	1.2	25
113	Cell Cycle Regulation of the Replication Licensing System: Involvement of a Cdk-dependent Inhibitor. Journal of Cell Biology, 1997, 136, 125-135.	2.3	160
114	Characterization of the Xenopus replication licensing system. Methods in Enzymology, 1997, 283, 549-564.	0.4	79
115	Chromatin proteins involved in the initiation of DNA replication. Current Opinion in Genetics and Development, 1997, 7, 152-157.	1.5	74
116	Biochemical and Cellular Effects of Roscovitine, a Potent and Selective Inhibitor of the Cyclin-Dependent Kinases cdc2, cdk2 and cdk5. FEBS Journal, 1997, 243, 527-536.	0.2	1,215
117	The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides. EMBO Journal, 1997, 16, 3312-3319.	3.5	136
118	The DNA replication licensing system. Cancer Surveys, 1997, 29, 75-90.	1.5	9
119	Interaction between the Origin Recognition Complex and the Replication Licensing Systemin Xenopus. Cell, 1996, 87, 287-296.	13.5	249
120	Cell cycle control of replication initiation in eukaryotes. Current Opinion in Cell Biology, 1996, 8, 815-821.	2.6	51
121	The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Current Biology, 1996, 6, 1416-1425.	1.8	202
122	The role of MCM/P1 proteins in the licensing of DNA replication. Trends in Biochemical Sciences, 1996, 21, 102-106.	3.7	120
123	Chapter 2 DNA replication and its control. Principles of Medical Biology, 1996, , 11-31.	0.1	6
124	DNA replication licensing factor. , 1996, 2, 83-90.		16
125	Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. Journal of Cell Science, 1996, 109 (Pt 6), 1555-63.	1.2	54
126	The role of MCM/P1 proteins in the licensing of DNA replication. Trends in Biochemical Sciences, 1996, 21, 102-6.	3.7	57

#	Article	IF	CITATIONS
127	Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature, 1995, 375, 418-421.	13.7	355
128	Cip1 blocks the initiation of DNA replication in Xenopus extracts by inhibition of cyclin-dependent kinases. Current Biology, 1994, 4, 876-883.	1.8	129
129	Cip1 inhibits DNA replication but not PCNA-dependent nucleotide excision—repair. Current Biology, 1994, 4, 1062-1068.	1.8	150
130	Inhibition of Cyclin-Dependent Kinases by Purine Analogues. FEBS Journal, 1994, 224, 771-786.	0.2	576
131	Methyltransferases in foci. Nature, 1993, 361, 684-685.	13.7	6
132	Preventing re-replication of DNA in a single cell cycle: evidence for a replication licensing factor. Journal of Cell Biology, 1993, 122, 993-1002.	2.3	188
133	Site-specific Initiation of DNA Replication in Metazoan Chromosomes and the Role of Nuclear Organization. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 475-485.	2.0	23
134	DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. Nucleic Acids Research, 1992, 20, 1457-1462.	6.5	145
135	The use of field emission in-lens scanning electron microscopy to study the steps of assembly of the nuclear envelope in vitro. Journal of Structural Biology, 1992, 108, 257-268.	1.3	24
136	The regulation of chromosome replication. Journal of Pathology, 1992, 167, 175-179.	2.1	5
137	What the paper say: A protein complex present at origins of DNA replication in yeast cells. BioEssays, 1992, 14, 561-563.	1.2	2
138	The Involvement of cdc2 in Cell Cycle Control of DNA Replication in Xenopus Egg Extracts. , 1992, , 49-58.		0
139	Cell cycle control of DNA replication by p34cdc2. Seminars in Cell Biology, 1991, 2, 243-50.	3.5	1
140	A cdc2-like protein is involved in the initiation of DNA replication in Xenopus egg extracts. Cell, 1990, 62, 855-862.	13.5	222
141	Replication of purified DNA in Xenopus egg extract is dependent on nuclear assembly. Journal of Cell Science, 1990, 95 (Pt 3), 383-91.	1.2	29
142	Nuclear structure and the control of DNA replication in the Xenopus embryo. Journal of Cell Science, 1989, 1989, 183-195.	1.2	14
143	S phase of the cell cycle. Science, 1989, 246, 609-614.	6.0	197
144	Eukaryotic chromosome replication requires both α and δ DNA polymerases. Trends in Genetics, 1989, 5, 134-136.	2.9	17

#	Article	IF	CITATIONS
145	DNA replication and its control. Current Opinion in Cell Biology, 1989, 1, 263-267.	2.6	4
146	Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell, 1989, 56, 947-956.	13.5	463
147	Replication occurs at discrete foci spaced throughout nuclei replicating in vitro. Journal of Cell Science, 1989, 94 (Pt 3), 471-7.	1.2	58
148	Eukaryotic DNA replication reconstituted outside the cell. BioEssays, 1988, 8, 149-152.	1.2	13
149	A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature, 1988, 332, 546-548.	13.7	608
150	Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs Journal of Cell Biology, 1988, 106, 1-12.	2.3	253
151	Chromosome replication in cell-free systems from Xenopus eggs. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1987, 317, 483-494.	2.4	28
152	Nuclei act as independent and integrated units of replication in a Xenopus cell-free DNA replication system EMBO Journal, 1987, 6, 1997-2002.	3.5	115
153	A probe for nascent DNA in intact nuclei. Trends in Genetics, 1987, 3, 233.	2.9	Ο
154	Many strands converge. Nature, 1987, 326, 441-442.	13.7	18
155	Nuclei act as independent and integrated units of replication in a Xenopus cell-free DNA replication system. EMBO Journal, 1987, 6, 1997-2002.	3.5	36
156	Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell, 1986, 47, 577-587.	13.5	623