
MarÃ-a-Soledad FernÃ;ndez-PachÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6952637/publications.pdf

Version: 2024-02-01

MarÃa-Soledad

#	Article	IF	CITATIONS
1	Effect of Acute Intake of Fermented Orange Juice on Fasting and Postprandial Glucose Metabolism, Plasma Lipids and Antioxidant Status in Healthy Human. Foods, 2022, 11, 1256.	4.3	4
2	Bioactive Peptides from Lupin (<i>Lupinus angustifolius</i>) Prevent the Early Stages of Atherosclerosis in Western Diet-Fed ApoE ^{–/–} Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 8243-8253.	5.2	12
3	Safety and Efficacy of a Beverage Containing Lupine Protein Hydrolysates on the Immune, Oxidative and Lipid Status in Healthy Subjects: An Intervention Study (the Lupineâ€1 Trial). Molecular Nutrition and Food Research, 2021, 65, e2100139.	3.3	26
4	Lupinus angustifolius Protein Hydrolysates Reduce Abdominal Adiposity and Ameliorate Metabolic Associated Fatty Liver Disease (MAFLD) in Western Diet Fed-ApoEâ^'/â^ Mice. Antioxidants, 2021, 10, 1222.	5.1	16
5	Intake of branched chain amino acids favors post-exercise muscle recovery and may improve muscle function: optimal dosage regimens and consumption conditions. Journal of Sports Medicine and Physical Fitness, 2021, 61, 1478-1489.	0.7	5
6	Absorption, metabolism, and excretion of orange juice (poly)phenols in humans: The effect of a controlled alcoholic fermentation. Archives of Biochemistry and Biophysics, 2020, 695, 108627.	3.0	24
7	Immunomodulatory and Antioxidant Properties of Wheat Gluten Protein Hydrolysates in Human Peripheral Blood Mononuclear Cells. Nutrients, 2020, 12, 1673.	4.1	16
8	Effect of daily intake of a low-alcohol orange beverage on cardiovascular risk factors in hypercholesterolemic humans. Food Research International, 2019, 116, 168-174.	6.2	10
9	β-Cryptoxanthin is more bioavailable in humans from fermented orange juice than from orange juice. Food Chemistry, 2018, 262, 215-220.	8.2	21
10	Consumption of orange fermented beverage improves antioxidant status and reduces peroxidation lipid and inflammatory markers in healthy humans. Journal of the Science of Food and Agriculture, 2018, 98, 2777-2786.	3.5	20
11	Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. International Journal of Food Sciences and Nutrition, 2016, 67, 779-788.	2.8	33
12	Changes in orange juice (poly)phenol composition induced by controlled alcoholic fermentation. Analytical Methods, 2016, 8, 8151-8164.	2.7	12
13	Orange beverage ameliorates high-fat-diet-induced metabolic disorder in mice. Journal of Functional Foods, 2016, 24, 254-263.	3.4	7
14	Consumption of orange fermented beverage reduces cardiovascular risk factors in healthy mice. Food and Chemical Toxicology, 2015, 78, 78-85.	3.6	30
15	Effect of Fermentation and Subsequent Pasteurization Processes on Amino Acids Composition of Orange Juice. Plant Foods for Human Nutrition, 2015, 70, 153-159.	3.2	22
16	Alcoholic fermentation induces melatonin synthesis in orange juice. Journal of Pineal Research, 2014, 56, 31-38.	7.4	59
17	Effect of Alcoholic Fermentation on the Carotenoid Composition and Provitamin A Content of Orange Juice. Journal of Agricultural and Food Chemistry, 2014, 62, 842-849.	5.2	14
18	Absorption, metabolism, and excretion of fermented orange juice (poly)phenols in rats. BioFactors, 2014. 40. 327-335.	5.4	25

MARÃA-SOLEDAD

#	Article	IF	CITATIONS
19	Fermented Orange Juice: Source of Higher Carotenoid and Flavanone Contents. Journal of Agricultural and Food Chemistry, 2013, 61, 8773-8782.	5.2	84
20	Changes in Antioxidant Endogenous Enzymes (Activity and Gene Expression Levels) after Repeated Red Wine Intake. Journal of Agricultural and Food Chemistry, 2009, 57, 6578-6583.	5.2	54
21	Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. Journal of Food Composition and Analysis, 2008, 21, 282-290.	3.9	137
22	Antioxidant Activity of Phenolic Compounds: From <i>In Vitro</i> Results to <i>In Vivo</i> Evidence. Critical Reviews in Food Science and Nutrition, 2008, 48, 649-671.	10.3	288
23	Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 2007, 71, 230-235.	5.5	671
24	Repeated Red Wine Consumption and Changes on Plasma Antioxidant Capacity and Endogenous Antioxidants (Uric Acid and Protein Thiol Groups). Journal of Agricultural and Food Chemistry, 2007, 55, 9713-9718.	5.2	20
25	Effects of head group size on micellization of cetyltrialkylammonium bromide surfactants in water–ethylene glycol mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298, 177-185.	4.7	50
26	Acute Intake of Red Wine does not Affect Antioxidant Enzymes Activities in Human Subjects. International Journal for Vitamin and Nutrition Research, 2006, 76, 291-298.	1.5	2
27	Sensory Evaluation of Sherry Vinegar: Traditional Compared to Accelerated Aging With Oak Chips. Journal of Food Science, 2006, 71, S238-S242.	3.1	13
28	Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Analytica Chimica Acta, 2006, 563, 101-108.	5.4	93
29	Influence of enological practices on the antioxidant activity of wines. Food Chemistry, 2006, 95, 394-404.	8.2	106
30	Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Analytica Chimica Acta, 2005, 538, 391-398.	5.4	172
31	Antioxidant Capacity of Plasma after Red Wine Intake in Human Volunteers. Journal of Agricultural and Food Chemistry, 2005, 53, 5024-5029.	5.2	46
32	Antioxidant activity of wines and relation with their polyphenolic composition. Analytica Chimica Acta, 2004, 513, 113-118.	5.4	217
33	Kinetic Study in Waterâ^'Ethylene Glycol Cationic, Zwitterionic, Nonionic, and Anionic Micellar Solutions. Langmuir, 2004, 20, 9945-9952.	3.5	41
34	The antioxidant activity of wines determined by the ABTS+ method: influence of sample dilution and time. Talanta, 2004, 64, 501-509.	5.5	99