
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6952273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelâ€based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Mathematical Methods in the Applied Sciences, 2023, 46, 11568-11582.	1.2	181
2	Comparative Analysis of Five Nanoparticles in the Flow of Viscous Fluid with Nonlinear Radiation and Homogeneous–Heterogeneous Reaction. Arabian Journal for Science and Engineering, 2022, 47, 8129-8140.	1.7	7
3	Thermal performance comparative analysis of nanofluid flows at an oblique stagnation point considering Xue model: a solar application. Journal of Computational Design and Engineering, 2022, 9, 201-215.	1.5	9
4	Performance-based comparison of Yamada–Ota and Hamilton–Crosser hybrid nanofluid flow models with magnetic dipole impact past a stretched surface. Scientific Reports, 2022, 12, 29.	1.6	21
5	Analytical study of creeping flow of Maxwell fluid in a permeable slit with linear re-absorption. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 6543-6553.	1.1	3
6	Entropy Minimization Analysis of a Partially Ionized Casson Nanofluid Flow over a Bidirectional Stretching Sheet with Surface Catalyzed Reaction. Arabian Journal for Science and Engineering, 2022, 47, 15209-15221.	1.7	17
7	EMHD hybrid squeezing nanofluid flow with variable features and irreversibility analysis. Physica Scripta, 2022, 97, 025705.	1.2	11
8	Hydrodynamic and heat transfer analysis of dissimilar shaped nanoparticles-based hybrid nanofluids in a rotating frame with convective boundary condition. Scientific Reports, 2022, 12, 436.	1.6	26
9	Homotopic simulation for heat transport phenomenon of the Burgers nanofluids flow over a stretching cylinder with thermal convective and zero mass flux conditions. Nanotechnology Reviews, 2022, 11, 1437-1449.	2.6	20
10	Significance of induced hybridized metallic and non-metallic nanoparticles in single-phase nano liquid flow between permeable disks by analyzing shape factor. Scientific Reports, 2022, 12, 3342.	1.6	14
11	Dissipated electroosmotic EMHD hybrid nanofluid flow through the micro-channel. Scientific Reports, 2022, 12, 4771.	1.6	24
12	A note on classification of dust static plane symmetric space-times via proper curvature collineations in f(R) gravity. International Journal of Geometric Methods in Modern Physics, 2022, 19, .	0.8	4
13	Comparative study of hybrid and nanofluid flows over an exponentially stretched curved surface with modified Fourier law and dust particles. Waves in Random and Complex Media, 2022, 32, 3053-3073.	1.6	9
14	Variable viscosity effects on the flow of MHD hybrid nanofluid containing dust particles over a needle with Hall current—a Xue model exploration. Communications in Theoretical Physics, 2022, 74, 055801.	1.1	10
15	Mathematical analysis of two-layer calendering of isothermal Newtonian fluids with different viscosities. European Physical Journal Plus, 2022, 137, 1.	1.2	1
16	Bidirectional flow of MHD nanofluid with Hall current and Cattaneo-Christove heat flux toward the stretching surface. PLoS ONE, 2022, 17, e0264208.	1.1	29
17	Hybrid Nanofluid Flow Induced by an Oscillating Disk Considering Surface Catalyzed Reaction and Nanoparticles Shape Factor. Nanomaterials, 2022, 12, 1794.	1.9	13
18	Analysis of the MHD partially ionized GO-Ag/water and GO-Ag/kerosene oil hybrid nanofluids flow over a stretching surface with Cattaneo–Christov double diffusion model: A comparative study. International Communications in Heat and Mass Transfer, 2022, 136, 106205.	2.9	27

#	Article	IF	CITATIONS
19	Magnetic Dipole and Thermophoretic Particle Deposition Impact on Bioconvective Oldroyd-B Fluid Flow over a Stretching Surface with Cattaneo–Christov Heat Flux. Nanomaterials, 2022, 12, 2181.	1.9	17
20	Effects of Soret and Dufour Numbers on the Three-Dimensional MHD Flow of Micropolar Fluid Containing Gyrotactic Microorganisms Over a Bidirectional Stretching Sheet With Cattaneo–Christov Heat and Mass Flux Model. Journal of Heat Transfer, 2022, 144, .	1.2	2
21	Dynamics of Williamson Ferro-nanofluid due to bioconvection in the portfolio of magnetic dipole and activation energy over a stretching sheet. International Communications in Heat and Mass Transfer, 2022, 137, 106245.	2.9	21
22	Nanomaterial between two plates which are squeezed with impose magnetic force. Journal of Thermal Analysis and Calorimetry, 2021, 144, 1023-1029.	2.0	35
23	Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. International Communications in Heat and Mass Transfer, 2021, 120, 104994.	2.9	48
24	Upshot of heterogeneous catalysis in a nanofluid flow over a rotating disk with slip effects and Entropy optimization analysis. Scientific Reports, 2021, 11, 120.	1.6	27
25	Timeâ€dependent hydromagnetic stagnation point flow of a Maxwell nanofluid with melting heat effect and amended Fourier andÂFick's laws. Heat Transfer, 2021, 50, 4417-4434.	1.7	11
26	Application of response surface methodology on the nanofluid flow over a rotating disk with autocatalytic chemical reaction and entropy generation optimization. Scientific Reports, 2021, 11, 4021.	1.6	31
27	Irreversibility minimization analysis of ferromagnetic Oldroyd-B nanofluid flow under the influence of a magnetic dipole. Scientific Reports, 2021, 11, 4810.	1.6	16
28	Conformal vector fields for some vacuum classes of pp-waves space-times in ghost free infinite derivative gravity. International Journal of Geometric Methods in Modern Physics, 2021, 18, 2150109.	0.8	4
29	Partially ionized hybrid nanofluid flow with thermal stratification. Journal of Materials Research and Technology, 2021, 11, 1457-1468.	2.6	22
30	Analyzing the impact of induced magnetic flux and Fourier's and Fick's theories on the Carreau-Yasuda nanofluid flow. Scientific Reports, 2021, 11, 9230.	1.6	15
31	Nonlinear radiative Maxwell nanofluid flow in a Darcy–Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection. Scientific Reports, 2021, 11, 9391.	1.6	21
32	3D Bio-convective nanofluid Bödewadt slip flow comprising gyrotactic microorganisms over a stretched stationary disk with modified Fourier law. Physica Scripta, 2021, 96, 075702.	1.2	4
33	A fractional model of Casson fluid with ramped wall temperature: Engineering applications of engine oil. Computational and Mathematical Methods, 2021, 3, e1162.	0.3	24
34	Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls. Scientific Reports, 2021, 11, 12637.	1.6	54
35	An entropy optimization study of non-Darcian magnetohydrodynamic Williamson nanofluid with nonlinear thermal radiation over a stratified sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235, 1883-1894.	1.4	29
36	Impact of autocatalytic chemical reaction in an Ostwald-de-Waele nanofluid flow past a rotating disk with heterogeneous catalysis. Scientific Reports, 2021, 11, 15526.	1.6	6

#	Article	IF	CITATIONS
37	Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo–Christov heat flux and autocatalyticÂchemical reaction. Scientific Reports, 2021, 11, 14625.	1.6	45
38	Soret–Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media. Scientific Reports, 2021, 11, 14513.	1.6	18
39	Impact of Hall Current on a 3D Casson Nanofluid Flow Past a Rotating Deformable Disk with Variable Characteristics. Arabian Journal for Science and Engineering, 2021, 46, 12653-12666.	1.7	17
40	Bioconvective Reiner–Rivlin nanofluid flow over a rotating disk with Cattaneo–Christov flow heat flux and entropy generation analysis. Scientific Reports, 2021, 11, 15859.	1.6	34
41	Upshot of melting heat transfer in a Von Karman rotating flow of gold-silver/engine oil hybrid nanofluid with Cattaneo-Christov heat flux. Case Studies in Thermal Engineering, 2021, 26, 101149.	2.8	52
42	Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics. Case Studies in Thermal Engineering, 2021, 26, 101039.	2.8	42
43	Von Karman rotating nanofluid flow with modified Fourier law and variable characteristics in liquid and gas scenarios. Scientific Reports, 2021, 11, 16442.	1.6	14
44	Thermophoretic particle deposition in the flow of dual stratified Casson fluid with magnetic dipole and generalized Fourier's and Fick's laws. Case Studies in Thermal Engineering, 2021, 26, 101186.	2.8	30
45	Mechanical analysis of non-Newtonian nanofluid past a thin needle with dipole effect and entropic characteristics. Scientific Reports, 2021, 11, 19378.	1.6	31
46	Soret and Dufour effects on a Casson nanofluid flow past a deformable cylinder with variable characteristics and Arrhenius activation energy. Scientific Reports, 2021, 11, 19282.	1.6	20
47	Role of Cattaneo–Christov heat flux in an MHD Micropolar dusty nanofluid flow with zero mass flux condition. Scientific Reports, 2021, 11, 19528.	1.6	19
48	On hybrid nanofluid Yamada-Ota and Xue flow models in a rotating channel with modified Fourier law. Scientific Reports, 2021, 11, 19590.	1.6	9
49	Impact of Newtonian heating and Fourier and Fick's laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder. Scientific Reports, 2021, 11, 2357.	1.6	52
50	Numerical solutions of coupled nonlinear fractional KdV equations using He's fractional calculus. International Journal of Modern Physics B, 2021, 35, 2150023.	1.0	11
51	Chemical reaction and thermal radiation impact on a nanofluid flow in a rotating channel with Hall current. Scientific Reports, 2021, 11, 19747.	1.6	32
52	Analysis of Newtonian heating and higher-order chemical reaction on a Maxwell nanofluid in a rotating frame with gyrotactic microorganisms and variable heat source/sink. Journal of King Saud University - Science, 2021, 33, 101645.	1.6	22
53	Influence of autocatalytic chemical reaction with heterogeneous catalysis in the flow of Ostwald-de-Waele nanofluid past a rotating disk with variable thickness in porous media. International Communications in Heat and Mass Transfer, 2021, 128, 105653.	2.9	11
54	Comparative study of hybrid and nanofluid flows amidst two rotating disks with thermal stratification: Statistical and numerical approaches. Case Studies in Thermal Engineering, 2021, 28, 101596.	2.8	13

#	Article	IF	CITATIONS
55	Comparative analysis of Maxwell and Xue models for a hybrid nanofluid film flow on an inclined moving substrate. Case Studies in Thermal Engineering, 2021, 28, 101598.	2.8	12
56	Impact of melting heat transfer in the bioconvective Casson nanofluid flow past a stretching cylinder with entropy generation minimization analysis. International Journal of Modern Physics B, 2021, 35, .	1.0	12
57	Significance low oscillating magnetic field and Hall current in the nano-ferrofluid flow past a rotating stretchable disk. Scientific Reports, 2021, 11, 23204.	1.6	9
58	Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions. PLoS ONE, 2021, 16, e0260854.	1.1	42
59	Flow of nanofluid with Cattaneo–Christov heat flux model. Applied Nanoscience (Switzerland), 2020, 10, 2989-2999.	1.6	33
60	Thermally stratified Darcy–Forchheimer nanofluid flow comprising carbon nanotubes with effects of Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. Physica Scripta, 2020, 95, 015701.	1.2	18
61	Numerical iteration for nonlinear oscillators by Elzaki transform. Journal of Low Frequency Noise Vibration and Active Control, 2020, 39, 879-884.	1.3	27
62	Upshot of magnetic dipole on the flow of nanofluid along a stretched cylinder with gyrotactic microorganism in a stratified medium. Physica Scripta, 2020, 95, 025702.	1.2	27
63	Numerical Simulation of 3D Condensation Nanofluid Film Flow with Carbon Nanotubes on an Inclined Rotating Disk. Applied Sciences (Switzerland), 2020, 10, 168.	1.3	27
64	Numerical treatment of radiative Nickel–Zinc ferrite-Ethylene glycol nanofluid flow past a curved surface with thermal stratification and slip conditions. Scientific Reports, 2020, 10, 16832.	1.6	12
65	Classification of non-conformally flat static plane symmetric perfect fluid solutions via proper conformal vector fields in f(T) gravity. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050218.	0.8	10
66	Significance of magnetic Reynolds number in a three-dimensional squeezing Darcy–Forchheimer hydromagnetic nanofluid thin-film flow between two rotating disks. Scientific Reports, 2020, 10, 17208.	1.6	25
67	Impact of melting heat transfer in the time-dependent squeezing nanofluid flow containing carbon nanotubes in a Darcy-Forchheimer porous media with Cattaneo-Christov heat flux. Communications in Theoretical Physics, 2020, 72, 085801.	1.1	26
68	A novel model to analyze Darcy Forchheimer nanofluid flow in a permeable medium with Entropy generation analysis. Journal of Taibah University for Science, 2020, 14, 916-930.	1.1	23
69	Conformal vector fields of some vacuum classes of static spherically symmetric space-times in f(T,B) gravity. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050149.	0.8	10
70	Comparative analysis of magnetized partially ionized copper, copper oxide–water and kerosene oil nanofluid flow with Cattaneo–Christov heat flux. Scientific Reports, 2020, 10, 19300.	1.6	29
71	Onset of gyrotactic microorganisms in MHD Micropolar nanofluid flow with partial slip and double stratification. Journal of King Saud University - Science, 2020, 32, 2741-2751.	1.6	54
72	Nanofluid flow with autocatalytic chemical reaction over a curved surface with nonlinear thermal radiation and slip condition. Scientific Reports, 2020, 10, 18339.	1.6	18

#	Article	IF	CITATIONS
73	Impact of hall and ion slip in a thermally stratified nanofluid flow comprising Cu and Al2O3 nanoparticles with nonuniform source/sink. Scientific Reports, 2020, 10, 18064.	1.6	16
74	Significance of Hall effect and Ion slip in a three-dimensional bioconvective Tangent hyperbolic nanofluid flow subject to Arrhenius activation energy. Scientific Reports, 2020, 10, 18342.	1.6	52
75	Nanofluid flow containing carbon nanotubes with quartic autocatalytic chemical reaction and Thompson and Troian slip at the boundary. Scientific Reports, 2020, 10, 18710.	1.6	19
76	Modeling for solidification of water within a triplex-tube tank using nanoparticles. Journal of Molecular Liquids, 2020, 313, 113532.	2.3	11
77	Existence of conformal vector fields of Bianchi type I space-times in f(R) gravity. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050113.	0.8	17
78	Conformal vector fields of static spherically symmetric space-times in f(R,ÂG) gravity. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050120.	0.8	6
79	Unsteady MHD carbon nanotubes suspended nanofluid flow with thermal stratification and nonlinear thermal radiation. AEJ - Alexandria Engineering Journal, 2020, 59, 1557-1566.	3.4	30
80	Modeling of MHD hybrid nanofluid flow through permeable enclosure. International Journal of Modern Physics C, 2020, 31, 2050106.	0.8	11
81	Radiative MHD Nanofluid Flow over a Moving Thin Needle with Entropy Generation in a Porous Medium with Dust Particles and Hall Current. Entropy, 2020, 22, 354.	1.1	34
82	Solidification of PCM with nano powders inside a heat exchanger. Journal of Molecular Liquids, 2020, 306, 112892.	2.3	51
83	Conformal vector fields in proper non-static plane symmetric spacetimes in f(R) gravity. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050077.	0.8	11
84	Classification of proper non-static cylindrically symmetric perfect fluid space-times via conformal vector fields in f(R) gravity. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050147.	0.8	10
85	Thermally Stratified Darcy Forchheimer Flow on a Moving Thin Needle with Homogeneous Heterogeneous Reactions and Non-Uniform Heat Source/Sink. Applied Sciences (Switzerland), 2020, 10, 432.	1.3	22
86	Numerical Analysis of Carbon Nanotube-Based Nanofluid Unsteady Flow Amid Two Rotating Disks with Hall Current Coatings and Homogeneous–Heterogeneous Reactions. Coatings, 2020, 10, 48.	1.2	16
87	Effects of Chemical Species and Nonlinear Thermal Radiation with 3D Maxwell Nanofluid Flow with Double Stratification—An Analytical Solution. Entropy, 2020, 22, 453.	1.1	37
88	A note on classification of static plane symmetric perfect fluid space-times via proper conformal vector fields in f(G) theory of gravity. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050086.	0.8	9
89	Conformal and Disformal Structure of 3D Circularly Symmetric Static Metric in f(R) Theory of Gravity. Mehran University Research Journal of Engineering and Technology, 2020, 39, 111-116.	0.3	0
90	Diffraction of Transient Cylindrical Waves by a Rigid Oscillating Strip. Applied Sciences (Switzerland), 2020, 10, 3568.	1.3	1

#	Article	IF	CITATIONS
91	Entropy Analysis of Carbon Nanotubes Based Nanofluid Flow Past a Vertical Cone with Thermal Radiation. Entropy, 2019, 21, 642.	1.1	30
92	Effect of second order slip condition on the flow of Tangent hyperbolic fluid—a novel perception of Cattaneo–Christov heat flux. Physica Scripta, 2019, 94, 115707.	1.2	13
93	Onset of Cattaneo-Christov Heat Flux and Thermal Stratification in Ethylene-Glycol Based Nanofluid Flow Containing Carbon Nanotubes in a Rotating Frame. IEEE Access, 2019, 7, 146190-146197.	2.6	20
94	Magnetized suspended carbon nanotubes based nanofluid flow with bio-convection and entropy generation past a vertical cone. Scientific Reports, 2019, 9, 12225.	1.6	50
95	Classification of vacuum classes of plane fronted gravitational waves via proper conformal vector fields in f(R) gravity. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950151.	0.8	20
96	A note on some Bianchi type II spacetimes and their conformal vector fields in <i>f</i> (<i>R</i>) theory of gravity. Modern Physics Letters A, 2019, 34, 1950320.	0.5	20
97	HE–ELZAKI METHOD FOR SPATIAL DIFFUSION OF BIOLOGICAL POPULATION. Fractals, 2019, 27, 1950069.	1.8	29
98	A note on classification of spatially homogeneous rotating space-times in f(R) theory of gravity according to their proper conformal vector fields. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950111.	0.8	20
99	Numerical Simulation of Darcy–Forchheimer 3D Unsteady Nanofluid Flow Comprising Carbon Nanotubes with Cattaneo–Christov Heat Flux and Velocity and Thermal Slip Conditions. Processes, 2019, 7, 687.	1.3	34
100	Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in Darcy–Forchheimer porous media. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3127-3137.	2.0	53
101	A note on proper homothetic vector fields in plane symmetric perfect fluid static spacetimes in f(R, T) theory of gravity. Modern Physics Letters A, 2019, 34, 1950189.	0.5	11
102	MHD flow of Maxwell fluid with nanomaterials due to an exponentially stretching surface. Scientific Reports, 2019, 9, 7312.	1.6	80
103	A Thin Film Flow of Nanofluid Comprising Carbon Nanotubes Influenced by Cattaneo-Christov Heat Flux and Entropy Generation. Coatings, 2019, 9, 296.	1.2	36
104	MHD Boundary Layer Flow of Carreau Fluid over a Convectively Heated Bidirectional Sheet with Non-Fourier Heat Flux and Variable Thermal Conductivity. Symmetry, 2019, 11, 618.	1.1	27
105	A note on some perfect fluid Kantowski–Sachs and Bianchi type III spacetimes and their conformal vector fields in <i>f</i> (<i>R</i>) theory of gravity. Modern Physics Letters A, 2019, 34, 1950079.	0.5	23
106	A Numerical Simulation of Silver–Water Nanofluid Flow with Impacts of Newtonian Heating and Homogeneous–Heterogeneous Reactions Past a Nonlinear Stretched Cylinder. Symmetry, 2019, 11, 295.	1.1	47
107	Simulation of natural convection of Fe3O4-water ferrofluid in a circular porous cavity in the presence of a magnetic field. European Physical Journal Plus, 2019, 134, 1.	1.2	20
108	On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple Stress nanofluid over an exponentially stretched surface. Scientific Reports, 2019, 9, 562.	1.6	55

#	Article	IF	CITATIONS
109	Impact of Nonlinear Chemical Reaction and Melting Heat Transfer on an MHD Nanofluid Flow over a Thin Needle in Porous Media. Applied Sciences (Switzerland), 2019, 9, 5492.	1.3	14
110	Impact of Second-Order Slip and Double Stratification Coatings on 3D MHD Williamson Nanofluid Flow with Cattaneo–Christov Heat Flux. Coatings, 2019, 9, 849.	1.2	25
111	Classification of static cylindrically symmetric spacetimes in f(R) theory of gravity by conformal motions with perfect fluid matter. Arabian Journal of Mathematics, 2019, 8, 115-123.	0.4	23
112	Study of heat transfer and entropy generation in ferrofluid under low oscillating magnetic field. Indian Journal of Physics, 2019, 93, 749-758.	0.9	14
113	Nanoparticle transportation through a permeable duct with Joule heating influence. Microsystem Technologies, 2019, 25, 3571-3580.	1.2	10
114	Computational Analysis for Mixed Convective Flows of Viscous Fluids With Nanoparticles. Journal of Thermal Science and Engineering Applications, 2019, 11, .	0.8	12
115	Unsteady squeezing carbon nanotubes based nano-liquid flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. Applied Nanoscience (Switzerland), 2019, 9, 169-178.	1.6	41
116	Influence of adding nanoparticles on solidification in a heat storage system considering radiation effect. Journal of Molecular Liquids, 2019, 273, 589-605.	2.3	20
117	Numerical approach for nanofluid transportation due to electric force in a porous enclosure. Microsystem Technologies, 2019, 25, 2501-2514.	1.2	24
118	Numerical simulation for homogeneous–heterogeneous reactions and Newtonian heating in the silver-water nanofluid flow past a nonlinear stretched cylinder. Physica Scripta, 2019, 94, 085702.	1.2	35
119	Flow of Rheological Nanofluid Over a Static Wedge. Journal of Nanofluids, 2019, 8, 1362-1366.	1.4	5
120	A note on proper curvature symmetry in general cylindrically symmetric four-dimensional Lorentzian manifolds. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850105.	0.8	8
121	Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface. Scientific Reports, 2018, 8, 3709.	1.6	48
122	Review of real-time load of H.A Fibers \hat{A}^{\circledast} grid with distributed fuel cells renewable generation unit. , 2018, , .		1
123	Computational analysis of three layer fluid model including a nanomaterial layer. International Journal of Heat and Mass Transfer, 2018, 122, 222-228.	2.5	30
124	On MHD radiative Jeffery nanofluid flow with convective heat and mass boundary conditions. Neural Computing and Applications, 2018, 30, 2739-2748.	3.2	32
125	Impact of Nonlinear Thermal Radiation and Entropy Optimization Coatings with Hybrid Nanoliquid Flow Past a Curved Stretched Surface. Coatings, 2018, 8, 430.	1.2	34
126	Dust static plane symmetric solutions and their conformal vector fields in <i>f</i> (<i>R</i>) theory of gravity. Modern Physics Letters A, 2018, 33, 1850222.	0.5	21

#	Article	IF	CITATIONS
127	Entropy Analysis of 3D Non-Newtonian MHD Nanofluid Flow with Nonlinear Thermal Radiation Past over Exponential Stretched Surface. Entropy, 2018, 20, 930.	1.1	24
128	Melting heat transfer and entropy optimization owing to carbon nanotubes suspended Casson nanoliquid flow past a swirling cylinder-A numerical treatment. AIP Advances, 2018, 8, .	0.6	27
129	Classification of static spherically symmetric space-times in f(R) theory of gravity according to their conformal vector fields. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850193.	0.8	26
130	Slip flow through a non-uniform channel under the influence of transverse magnetic field. Scientific Reports, 2018, 8, 13137.	1.6	7
131	Significance of Darcy-Forchheimer Porous Medium in Nanofluid Through Carbon Nanotubes. Communications in Theoretical Physics, 2018, 70, 361.	1.1	87
132	Influence of slip velocity on the flow of viscous fluid through a porous medium in a permeable tube with a variable bulk flow rate. Results in Physics, 2018, 11, 861-868.	2.0	9
133	Investigation of Lorentz forces and radiation impacts on nanofluid treatment in a porous semi annulus via Darcy law. Journal of Molecular Liquids, 2018, 272, 8-14.	2.3	20
134	Upshot of Chemical Species and Nonlinear Thermal Radiation on Oldroyd-B Nanofluid Flow Past a Bi-directional Stretched Surface with Heat Generation/Absorption in a Porous Media. Communications in Theoretical Physics, 2018, 70, 071.	1.1	17
135	A Numerical Investigation of 3D MHD Rotating Flow with Binary Chemical Reaction, Activation Energy and Non-Fourier Heat Flux. Communications in Theoretical Physics, 2018, 70, 089.	1.1	30
136	On three-dimensional MHD Oldroyd-B fluid flow with nonlinear thermal radiation and homogeneous–heterogeneous reaction. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	20
137	A numerical treatment of MHD radiative flow of Micropolar nanofluid with homogeneous-heterogeneous reactions past a nonlinear stretched surface. Scientific Reports, 2018, 8, 12431.	1.6	36
138	Influence of homogeneous-heterogeneous reactions on MHD 3D Maxwell fluid flow with Cattaneo-Christov heat flux and convective boundary condition. Journal of Molecular Liquids, 2017, 230, 415-422.	2.3	59
139	Soret and Dufour Effects on Three Dimensional Upper-Convected Maxwell Fluid with Chemical Reaction and Non-Linear Radiative Heat Flux. International Journal of Chemical Reactor Engineering, 2017, 15, .	0.6	16
140	Effects of Variable Thermal Conductivity and Non-linear Thermal Radiation Past an Eyring Powell Nanofluid Flow with Chemical Reaction. Communications in Theoretical Physics, 2017, 67, 723.	1.1	57
141	Radiative magnetohydrodynamic nanofluid flow due to gyrotactic microorganisms with chemical reaction and non-linear thermal radiation. International Journal of Mechanical Sciences, 2017, 130, 31-40.	3.6	80
142	Radiative Williamson nanofluid flow over a convectively heated Riga plate with chemical reaction-A numerical approach. Chinese Journal of Physics, 2017, 55, 1663-1673.	2.0	71
143	Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk – A numerical approach. Results in Physics, 2017, 7, 3557-3566.	2.0	55
144	Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction. Scientific Reports, 2017, 7, 12901.	1.6	74

#	Article	IF	CITATIONS
145	Impact of generalized Fourier's and Fick's laws on MHD 3D second grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions. Physics of Fluids, 2017, 29, 093102.	1.6	30
146	Double stratified radiative Jeffery magneto nanofluid flow along an inclined stretched cylinder with chemical reaction and slip condition. European Physical Journal Plus, 2017, 132, 1.	1.2	17
147	Effects of thermal and solutal stratification on jeffrey magneto-nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption. International Journal of Mechanical Sciences, 2017, 131-132, 317-324.	3.6	55
148	MHD stagnation point Cattaneo–Christov heat flux in Williamson fluid flow with homogeneous–heterogeneous reactions and convective boundary condition — A numerical approach. Journal of Molecular Liquids, 2017, 225, 856-862.	2.3	52
149	A numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy. Scientific Reports, 2017, 7, 17008.	1.6	43
150	Upshot of binary chemical reaction and activation energy on carbon nanotubes with Cattaneo-Christov heat flux and buoyancy effects. Physics of Fluids, 2017, 29, .	1.6	50
151	Numerical Simulation of Magnetohydrodynamic Radiative Flow of Casson Nanofluid with Chemical Reaction Past a Porous Media. Journal of Computational and Theoretical Nanoscience, 2017, 14, 5788-5796.	0.4	13
152	Radiative Flow of Powell-Eyring Magneto-Nanofluid over a Stretching Cylinder with Chemical Reaction and Double Stratification near a Stagnation Point. PLoS ONE, 2017, 12, e0170790.	1.1	55
153	Position Control of Switched Reluctance Motor Using Super Twisting Algorithm. Mathematical Problems in Engineering, 2016, 2016, 1-9.	0.6	6
154	Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface – An optimal solution. Results in Physics, 2016, 6, 1072-1079.	2.0	60
155	Mixed convective radiative flow of second grade nanofluid with convective boundary conditions: An optimal solution. Results in Physics, 2016, 6, 796-804.	2.0	33
156	Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with Cattaneo-Christov heat flux. Journal of Molecular Liquids, 2016, 223, 1284-1290.	2.3	48
157	Mixed Convective Viscoelastic Nanofluid Flow Past a Porous Media with Soret—Dufour Effects. Communications in Theoretical Physics, 2016, 66, 133-142.	1.1	23
158	Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition. Journal of Molecular Liquids, 2016, 221, 394-400.	2.3	78
159	Three dimensional boundary layer flow of a viscoelastic nanofluid with Soret and Dufour effects. AEJ - Alexandria Engineering Journal, 2016, 55, 311-319.	3.4	33
160	Three-dimensional flow of an elastico-viscous nanofluid with chemical reaction and magnetic field effects. Journal of Molecular Liquids, 2016, 215, 212-220.	2.3	58
161	A Numerical Study of Magnetohydrodynamic Stagnation Point Flow of Nanofluid with Newtonian Heating. Journal of Computational and Theoretical Nanoscience, 2016, 13, 8419-8426.	0.4	15
162	Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating. AIP Advances, 2015, 5, .	0.6	34

#	Article	IF	CITATIONS
163	Influence of Newtonian Heating on Three Dimensional MHD Flow of Couple Stress Nanofluid with Viscous Dissipation and Joule Heating. PLoS ONE, 2015, 10, e0124699.	1.1	49
164	Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation. PLoS ONE, 2015, 10, e0124929.	1.1	56
165	MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects. Journal of Central South University, 2015, 22, 707-716.	1.2	40
166	Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation. Journal of Central South University, 2015, 22, 360-367.	1.2	49
167	Flow of Casson nanofluid with viscous dissipation and convective conditions: A mathematical model. Journal of Central South University, 2015, 22, 1132-1140.	1.2	76
168	Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 68-85.	1.6	44
169	Radiative Hydromagnetic Flow of Jeffrey Nanofluid by an Exponentially Stretching Sheet. PLoS ONE, 2014, 9, e103719.	1.1	69
170	MHD three-dimensional flow of couple stress fluid with Newtonian heating. European Physical Journal Plus, 2013, 128, 1.	1.2	88
171	A note on proper curvature collineations in Bianchi type VIII and IX space-times. Gravitation and Cosmology, 2010, 16, 61-64.	0.3	3
172	DIFFRACTION OF PLANE WAVES BY A SLIT IN AN INFINITE SOFT-HARD PLANE. Progress in Electromagnetics Research B, 2009, 11, 103-131.	0.7	6
173	Diffraction of a plane wave by a soft–hard strip. Optics Communications, 2009, 282, 4322-4328.	1.0	2
174	Acoustic diffraction by an oscillating strip. Applied Mathematics and Computation, 2009, 214, 201-209.	1.4	7
175	Diffraction of waves by an oscillating source and an oscillating half plane. Journal of Modern Optics, 2009, 56, 1335-1340.	0.6	3
176	Line source and point source diffraction by a reactive step. Journal of Modern Optics, 2009, 56, 893-902.	0.6	3
177	Magnetic Line Source Diffraction by an Impedance Step. IEEE Transactions on Antennas and Propagation, 2009, 57, 1289-1293.	3.1	9
178	A note on plane wave diffraction by a perfectly conducting strip in a homogeneous bi-isotropic medium. Optics Express, 2008, 16, 13203.	1.7	3
179	PROPER CURVATURE COLLINEATIONS IN NONSTATIC SPHERICALLY SYMMETRIC SPACE–TIMES. International Journal of Modern Physics A, 2008, 23, 749-759.	0.5	6
180	A note on cylindrical wave diffraction by a perfectly conducting strip in a homogeneous bi-isotropic medium. Journal of Modern Optics, 2008, 55, 2805-2818.	0.6	2

#	Article	IF	CITATIONS
181	A NOTE ON SPHERICAL ELECTROMAGNETIC WAVE DIFFRACTION BY A PERFECTLY CONDUCTING STRIP IN A HOMOGENEOUS BI-ISOTROPIC MEDIUM. Progress in Electromagnetics Research, 2008, 85, 169-194.	1.6	10
182	The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1975, 346, 469-484.	1.5	86
183	Numerical simulation for stagnation-point flow of nanofluid over a spiraling disk through porous media. Waves in Random and Complex Media, 0, , 1-20.	1.6	1
184	Maxwell nanofluid flow influenced by variable characteristics and higher-order chemical reaction with convective conditions in a rotating frame. Waves in Random and Complex Media, 0, , 1-28.	1.6	1
185	Numerical analysis of two-layered isothermal calendering of viscoplastic and Newtonian fluids with different viscosity ratios. Journal of Plastic Film and Sheeting, 0, , 875608792210939.	1.3	0
186	Performance-based numerical appraisal of hybrid and nanofluid flows with Cattaneo-Christov heat flux model in a rotating frame with thermal stratification. Waves in Random and Complex Media, 0, , 1-21.	1.6	2
187	A note on classification of Kantowski–Sachs and Bianchi type III solutions in f(T) gravity via conformal vector fields. International Journal of Geometric Methods in Modern Physics, 0, , .	0.8	4