Shu-Nong Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6951238/publications.pdf

Version: 2024-02-01

394421 377865 1,195 36 19 34 citations h-index g-index papers 36 36 36 1276 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14469-14474.	7.1	145
2	Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta, 2004, 220, 230-240.	3.2	135
3	Ethylene perception is involved in female cucumber flower development. Plant Journal, 2010, 61, 862-872.	5.7	95
4	DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.). Planta, 2003, 217, 888-895.	3.2	72
5	HDA18 Affects Cell Fate in <i>Arabidopsis</i> Root Epidermis via Histone Acetylation at Four Kinase Genes. Plant Cell, 2013, 25, 257-269.	6.6	67
6	Stamen development in Arabidopsis is arrested by organ-specific overexpression of a cucumber ethylene synthesis gene CsACO2. Planta, 2008, 228, 537-543.	3.2	54
7	Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 Kinase Is Required for Anther Development. Plant Physiology, 2017, 173, 2265-2277.	4.8	51
8	Transcription Factor OsTGA10 Is a Target of the MADS Protein OsMADS8 and Is Required for Tapetum Development. Plant Physiology, 2018, 176, 819-835.	4.8	46
9	Nectar production and transportation in the nectaries of the female Cucumis sativus L. flower during anthesis. Protoplasma, 2004, 224, 71-78.	2.1	42
10	Characterization of an ethylene-inducible, calcium-dependent nuclease that is differentially expressed in cucumber flower development. New Phytologist, 2011, 192, 590-600.	7.3	40
11	Unisexual Cucumber Flowers, Sex and Sex Differentiation. International Review of Cell and Molecular Biology, 2013, 304, 1-55.	3.2	39
12	Preferential localization of abscisic acid in primordial and nursing cells of reproductive organs of Arabidopsis and cucumber. New Phytologist, 2006, 170, 459-466.	7.3	35
13	CsAP3: A Cucumber Homolog to Arabidopsis APETALA3 with Novel Characteristics. Frontiers in Plant Science, 2016, 07, 1181.	3.6	34
14	Why is ethylene involved in selective promotion of female flower development in cucumber?. Plant Signaling and Behavior, 2010, 5, 1052-1056.	2.4	33
15	Molecular analysis of early rice stamen development using organ-specific gene expression profiling. Plant Molecular Biology, 2006, 61, 845-861.	3.9	30
16	A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58. Molecular Plant, 2015, 8, 1069-1089.	8.3	29
17	OsSET1, a novel SET-domain-containing gene from rice. Journal of Experimental Botany, 2003, 54, 1995-1996.	4.8	27
18	<i>HISTONE DEACETYLASE6</i> -Defective Mutants Show Increased Expression and Acetylation of <i>ENHANCER OF TRIPTYCHON AND CAPRICE1</i> on Root Epidermis Cellular Pattern. Plant Physiology, 2015, 168, 1448-1458.	4.8	27

#	Article	IF	CITATIONS
19	The concept of the sexual reproduction cycle and its evolutionary significance. Frontiers in Plant Science, 2015, 6, 11.	3.6	25
20	Characterization of the Ubiquitin C-Terminal Hydrolase and Ubiquitin-Specific Protease Families in Rice (Oryza sativa). Frontiers in Plant Science, 2018, 9, 1636.	3.6	22
21	Bird–nest puzzle: can the study of unisexual flowers such as cucumber solve the problem of plant sex determination?. Protoplasma, 2012, 249, 119-123.	2.1	18
22	Auxin guides germ-cell specification in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ anthers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
23	Arabidopsis NMD3 Is Required for Nuclear Export of 60S Ribosomal Subunits and Affects Secondary Cell Wall Thickening. PLoS ONE, 2012, 7, e35904.	2.5	16
24	Overview of the morphology, anatomy, and ontogeny of <i>Adiantum capillusâ€veneris</i> : An experimental system to study the development of ferns. Journal of Systematics and Evolution, 2013, 51, 499-510.	3.1	15
25	Isolation and Characterization of a Novel SOMATIC EMBRYOGENESIS RECEPTOR KINASE Gene Expressed in the Fern Adiantum capillus-veneris During Shoot Regeneration In Vitro. Plant Molecular Biology Reporter, 2015, 33, 638-647.	1.8	14
26	A simple treatment to significantly increase signal specificity in immunohistochemistry. Plant Molecular Biology Reporter, 2006, 24, 93-101.	1.8	13
27	Histone Deacetylase HDA19 Affects Root Cortical Cell Fate by Interacting with SCARECROW. Plant Physiology, 2019, 180, 276-288.	4.8	13
28	One additional histone deacetylase and 2 histone acetyltransferases are involved in cellular patterning of Arabidopsis root epidermis. Plant Signaling and Behavior, 2016, 11, e1131373.	2.4	10
29	Reconsideration of Plant Morphological Traits: From a Structure-Based Perspective to a Function-Based Evolutionary Perspective. Frontiers in Plant Science, 2017, 8, 345.	3.6	7
30	Immunolocalization of Arabinogalactan Proteins and Pectins in Floral Buds of Cucumber (Cucumis) Tj ETQq0 0	0 rg <u>B</u> Ţ/Ov	erlock 10 Tf 5
31	Two types of germ cells, the sexual reproduction cycle, and the double-ring mode of plant developmental program. Plant Signaling and Behavior, 2017, 12, e1320632.	2.4	5
32	Key innovations in transition from homospory to heterospory. Plant Signaling and Behavior, 2019, 14, 1596010.	2.4	4
33	Plant Morphogenesis 123: a renaissance in modern botany?. Science China Life Sciences, 2019, 62, 453-466.	4.9	4
34	Rice Cell Division Cycle 20s are required for faithful chromosome segregation and cytokinesis during meiosis. Plant Physiology, 2022, 188, 1111-1128.	4.8	3
35	Are unisexual flowers an appropriate model to study plant sex determination?. Journal of Experimental Botany, 2020, 71, 4625-4628.	4.8	1
36	Trust in nature. Plant Signaling and Behavior, 2013, 8, e23936.	2.4	0