
## Thomas Klassen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6951199/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials.<br>Journal of Alloys and Compounds, 2001, 315, 237-242.                                          | 5.5 | 716       |
| 2  | Cold spraying – A materials perspective. Acta Materialia, 2016, 116, 382-407.                                                                                                                    | 7.9 | 607       |
| 3  | Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scripta Materialia, 2003, 49, 213-217.                                                                            | 5.2 | 531       |
| 4  | Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. International Journal of Hydrogen Energy, 2019, 44, 7780-7808.                              | 7.1 | 486       |
| 5  | From Particle Acceleration to Impact and Bonding in Cold Spraying. Journal of Thermal Spray Technology, 2009, 18, 794.                                                                           | 3.1 | 460       |
| 6  | Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Materialia, 2007, 56,<br>841-846.                                                                                   | 5.2 | 430       |
| 7  | Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. Journal of Alloys and Compounds, 2004, 364, 242-246.                                                                                | 5.5 | 386       |
| 8  | Hydrogen sorption properties of MgH2–LiBH4 composites. Acta Materialia, 2007, 55, 3951-3958.                                                                                                     | 7.9 | 350       |
| 9  | Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides.<br>Journal of Alloys and Compounds, 2007, 440, L18-L21.                                        | 5.5 | 305       |
| 10 | On Parameter Selection in Cold Spraying. Journal of Thermal Spray Technology, 2011, 20, 1161-1176.                                                                                               | 3.1 | 300       |
| 11 | Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents. Journal of Alloys and Compounds, 2006, 407, 249-255. | 5.5 | 291       |
| 12 | Catalytic Mechanism of Transition-Metal Compounds on Mg Hydrogen Sorption Reaction. Journal of Physical Chemistry B, 2006, 110, 11020-11024.                                                     | 2.6 | 240       |
| 13 | MgH with NbO as additive, for hydrogen storage: Chemical, structural and kinetic behavior with heating. Acta Materialia, 2006, 54, 105-110.                                                      | 7.9 | 240       |
| 14 | Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg. Journal of Alloys and Compounds, 2001, 322, L5-L9.                                    | 5.5 | 238       |
| 15 | Effect of Nb2O5 on MgH2 properties during mechanical milling. International Journal of Hydrogen Energy, 2007, 32, 2400-2407.                                                                     | 7.1 | 202       |
| 16 | Tailoring Hydrogen Storage Materials Towards Application. Advanced Engineering Materials, 2006, 8,<br>377-385.                                                                                   | 3.5 | 197       |
| 17 | Cycling and thermal stability of nanostructured MgH2–Cr2O3 composite for hydrogen storage.<br>Journal of Alloys and Compounds, 2002, 347, 319-323.                                               | 5.5 | 193       |
| 18 | Role of additives in LiBH4–MgH2 reactive hydride composites for sorption kinetics. Acta Materialia,<br>2010. 58. 3381-3389.                                                                      | 7.9 | 193       |

| #  | Article                                                                                                                                                                       | lF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Improvement in H-sorption kinetics of MgH powders by using Fe nanoparticles generated by reactive<br>FeF addition. Scripta Materialia, 2005, 52, 719-724.                     | 5.2  | 174       |
| 20 | Hydrogen sorption improvement of nanocrystalline MgH2 by Nb2O5 nanoparticles. Scripta Materialia,<br>2006, 54, 1293-1297.                                                     | 5.2  | 129       |
| 21 | Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2. Applied Surface Science, 2006, 252, 2334-2345.                         | 6.1  | 128       |
| 22 | Critical assessment and thermodynamic modeling of the Mg–H system. International Journal of<br>Hydrogen Energy, 1999, 24, 989-1004.                                           | 7.1  | 126       |
| 23 | Using MgO to improve the (de)hydriding properties of magnesium. Materials Research Bulletin, 2006, 41, 1118-1126.                                                             | 5.2  | 125       |
| 24 | Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray<br>Deposits. Journal of Thermal Spray Technology, 2011, 20, 234-242.            | 3.1  | 124       |
| 25 | BALL MILLING OF SYSTEMS WITH POSITIVE HEAT OF MIXING: EFFECT OF TEMPERATURE IN Ag-Cu. Acta<br>Materialia, 1997, 45, 2921-2930.                                                | 7.9  | 122       |
| 26 | Mg-based materials for hydrogen storage. Journal of Magnesium and Alloys, 2021, 9, 1837-1860.                                                                                 | 11.9 | 117       |
| 27 | Nb2O5 "Pathway Effect―on Hydrogen Sorption in Mg. Journal of Physical Chemistry B, 2006, 110,<br>7845-7850.                                                                   | 2.6  | 111       |
| 28 | Formation of supersaturated solid solutions in the immiscible Ni–Ag system by mechanical alloying.<br>Journal of Applied Physics, 1996, 79, 3935.                             | 2.5  | 108       |
| 29 | Formation of Ca(BH4)2from Hydrogenation of CaH2+MgB2Composite. Journal of Physical Chemistry C, 2008, 112, 2743-2749.                                                         | 3.1  | 106       |
| 30 | Metal hydrides for concentrating solarÂthermal power energy storage. Applied Physics A: Materials<br>Science and Processing, 2016, 122, 1.                                    | 2.3  | 95        |
| 31 | Mechanical and thermal decomposition of LiAlH4LiAlH4 with metal halides. International Journal of<br>Hydrogen Energy, 2007, 32, 1033-1040.                                    | 7.1  | 90        |
| 32 | The formation of metastable Ti–Al solid solutions by mechanical alloying and ball milling. Journal of<br>Materials Research, 1993, 8, 2819-2829.                              | 2.6  | 82        |
| 33 | Influence of thermal properties and temperature of substrate on the quality of cold-sprayed deposits.<br>Acta Materialia, 2017, 127, 287-301.                                 | 7.9  | 79        |
| 34 | Single Impact Bonding of Cold Sprayed Ti-6Al-4V Powders on Different Substrates. Journal of Thermal<br>Spray Technology, 2015, 24, 644-658.                                   | 3.1  | 78        |
| 35 | Thermodynamic analysis of the hydriding process of Mg–Ni alloys. Journal of Alloys and Compounds, 1999, 283, 213-224.                                                         | 5.5  | 77        |
| 36 | Nanoconfined 2LiBH <sub>4</sub> –MgH <sub>2</sub> Prepared by Direct Melt Infiltration into<br>Nanoporous Materials. Journal of Physical Chemistry C, 2011, 115, 10903-10910. | 3.1  | 75        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hydrogen storage systems from waste Mg alloys. Journal of Power Sources, 2014, 270, 554-563.                                                                                              | 7.8 | 75        |
| 38 | Industrial production of light metal hydrides for hydrogen storage. Scripta Materialia, 2007, 56,<br>847-851.                                                                             | 5.2 | 74        |
| 39 | Thermal and mechanically activated decomposition of LiAlH4. Materials Research Bulletin, 2008, 43, 1263-1275.                                                                             | 5.2 | 74        |
| 40 | Competition between stable and metastable phases during mechanical alloying and ball milling.<br>Physica Status Solidi A, 1992, 131, 671-689.                                             | 1.7 | 73        |
| 41 | H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine. Journal of Alloys and Compounds, 2005, 404-406, 409-412.                                                             | 5.5 | 73        |
| 42 | Formation of Cold-Sprayed Ceramic Titanium Dioxide Layers on Metal Surfaces. Journal of Thermal<br>Spray Technology, 2011, 20, 292-298.                                                   | 3.1 | 71        |
| 43 | Room temperature mechanical behavior of silicon-doped TiAl alloys with grain sizes in the nano- and submicron-range. Acta Materialia, 2001, 49, 299-311.                                  | 7.9 | 70        |
| 44 | Synthesis of nanocomposites and amorphous alloys by mechanical alloying. Journal of Materials Science, 2011, 46, 6301-6315.                                                               | 3.7 | 69        |
| 45 | <i>In situ</i> X-ray diffraction environments for high-pressure reactions. Journal of Applied Crystallography, 2015, 48, 1234-1241.                                                       | 4.5 | 67        |
| 46 | Thermal stability of nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 2005, 404-406, 499-502.                                                             | 5.5 | 66        |
| 47 | The early stages of phase formation during mechanical alloying of Ti–Al. Journal of Materials<br>Research, 1994, 9, 47-52.                                                                | 2.6 | 65        |
| 48 | Analysis of Thermal History and Residual Stress in Cold-Sprayed Coatings. Journal of Thermal Spray<br>Technology, 2014, 23, 84-90.                                                        | 3.1 | 60        |
| 49 | Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review. Metals, 2018, 8, 567.                                                                                     | 2.3 | 60        |
| 50 | Comment on â€~Adiabatic shear instability is not necessary for adhesion in cold spray'. Scripta<br>Materialia, 2019, 162, 512-514.                                                        | 5.2 | 59        |
| 51 | Mechanical behavior of submicron-grained γ-TiAl-based alloys at elevated temperatures. Intermetallics, 2001, 9, 559-569.                                                                  | 3.9 | 58        |
| 52 | Effect of Transition Metal Fluorides on the Sorption Properties and Reversible Formation of<br>Ca(BH <sub>4</sub> ) <sub>2</sub> . Journal of Physical Chemistry C, 2011, 115, 2497-2504. | 3.1 | 58        |
| 53 | Destabilization of LiBH4 by nanoconfinement in PMMA–co–BM polymer matrix for reversible hydrogen<br>storage. International Journal of Hydrogen Energy, 2014, 39, 5019-5029.               | 7.1 | 58        |
| 54 | Tetrahydroborates: Development and Potential as Hydrogen Storage Medium. Inorganics, 2017, 5, 74.                                                                                         | 2.7 | 58        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Inverse melting in the Ti-Cr system. Physical Review B, 1993, 47, 8520-8527.                                                                                                          | 3.2 | 54        |
| 56 | Waste Mg-Al based alloys for hydrogen storage. International Journal of Hydrogen Energy, 2018, 43,<br>16738-16748.                                                                    | 7.1 | 54        |
| 57 | Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4. International Journal of<br>Hydrogen Energy, 2021, 46, 23723-23736.                                         | 7.1 | 50        |
| 58 | Effect of nanosized oxides on MgH2 (de)hydriding kinetics. Journal of Alloys and Compounds, 2007, 434-435, 738-742.                                                                   | 5.5 | 49        |
| 59 | Nanoconfined 2LiBH4–MgH2–TiCl3 in carbon aerogel scaffold for reversible hydrogen storage.<br>International Journal of Hydrogen Energy, 2013, 38, 3275-3282.                          | 7.1 | 49        |
| 60 | Cold Spraying of Ti2AlC MAX-Phase Coatings. Journal of Thermal Spray Technology, 2013, 22, 406-412.                                                                                   | 3.1 | 49        |
| 61 | Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage. Energies, 2018, 11, 1027.                                                     | 3.1 | 49        |
| 62 | Optimization of hydrogen storage tubular tanks based on light weight hydrides. International Journal<br>of Hydrogen Energy, 2012, 37, 2825-2834.                                      | 7.1 | 47        |
| 63 | Effect of Substrate Temperature on Cold-Gas-Sprayed Coatings on Ceramic Substrates. Journal of<br>Thermal Spray Technology, 2013, 22, 422-432.                                        | 3.1 | 47        |
| 64 | Nanoconfined 2LiBH4–MgH2 for reversible hydrogen storages: Reaction mechanisms, kinetics and<br>thermodynamics. International Journal of Hydrogen Energy, 2013, 38, 1932-1942.        | 7.1 | 46        |
| 65 | Microscopic mechanisms of metastable phase formation during ball milling of intermetallic TiAl phases. Acta Materialia, 1997, 45, 3935-3948.                                          | 7.9 | 45        |
| 66 | Reversible hydrogen storage in NaF–Al composites. Journal of Alloys and Compounds, 2009, 477, 76-80.                                                                                  | 5.5 | 44        |
| 67 | 2LiBH <sub>4</sub> –MgH <sub>2</sub> in a Resorcinol–Furfural Carbon Aerogel Scaffold for<br>Reversible Hydrogen Storage. Journal of Physical Chemistry C, 2012, 116, 1526-1534.      | 3.1 | 44        |
| 68 | Behavior of scaled-up sodium alanate hydrogen storage tanks during sorption. International Journal<br>of Hydrogen Energy, 2012, 37, 2807-2811.                                        | 7.1 | 44        |
| 69 | Thermodynamics of the Ni–H system. Journal of Alloys and Compounds, 1999, 283, 151-161.                                                                                               | 5.5 | 43        |
| 70 | Hydrogen Sorption of Nanocrystalline Mg at Reduced Temperatures by Metal-Oxide Catalysts.<br>Advanced Engineering Materials, 2001, 3, 487-490.                                        | 3.5 | 43        |
| 71 | Synthesis of NaAlH4-based hydrogen storage material using milling under low pressure hydrogen atmosphere. Journal of Alloys and Compounds, 2007, 430, 350-355.                        | 5.5 | 43        |
| 72 | Experimental Evidence of Ca[B12H12] Formation During Decomposition of a Ca(BH4)2 + MgH2 Based<br>Reactive Hydride Composite. Journal of Physical Chemistry C, 2011, 115, 18010-18014. | 3.1 | 43        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Characterization of metal hydrides by in-situ XRD. International Journal of Hydrogen Energy, 2014, 39,<br>9899-9903.                                                                      | 7.1 | 43        |
| 74 | Impact Conditions for Cold Spraying of Hard Metallic Glasses. Journal of Thermal Spray Technology, 2012, 21, 531-540.                                                                     | 3.1 | 40        |
| 75 | Effective nanoconfinement of 2LiBH 4 –MgH 2 via simply MgH 2 premilling for reversible hydrogen<br>storages. International Journal of Hydrogen Energy, 2014, 39, 15614-15626.             | 7.1 | 39        |
| 76 | Influence of impurities on the milling process of MgH2. Journal of Alloys and Compounds, 2007, 434-435, 729-733.                                                                          | 5.5 | 38        |
| 77 | Activation of the reactive hydride composite 2NaBH4+MgH2. Scripta Materialia, 2011, 64, 1035-1038.                                                                                        | 5.2 | 37        |
| 78 | Sorption behavior of the MgH2–Mg2FeH6 hydride storage system synthesized by mechanical milling<br>followed by sintering. International Journal of Hydrogen Energy, 2013, 38, 14618-14630. | 7.1 | 37        |
| 79 | Compaction pressure influence on material properties and sorption behaviour of LiBH4–MgH2<br>composite. International Journal of Hydrogen Energy, 2013, 38, 8357-8366.                    | 7.1 | 37        |
| 80 | Mg-Based Hydrogen Storage Materials with Improved Hydrogen Sorption. Materials Transactions, 2001, 42, 1588-1592.                                                                         | 1.2 | 36        |
| 81 | Metallization of Thin Al2O3 Layers in Power Electronics Using Cold Gas Spraying. Journal of Thermal Spray Technology, 2011, 20, 299-306.                                                  | 3.1 | 36        |
| 82 | Economic potential of complex hydrides compared to conventional hydrogen storage systems.<br>International Journal of Hydrogen Energy, 2012, 37, 4204-4214.                               | 7.1 | 36        |
| 83 | 2LiBH4–MgH2–0.13TiCl4 confined in nanoporous structure of carbon aerogel scaffold for reversible<br>hydrogen storage. Journal of Alloys and Compounds, 2014, 599, 78-86.                  | 5.5 | 36        |
| 84 | Hydrogen storage in Mg–LiBH4 composites catalyzed by FeF3. Journal of Power Sources, 2014, 267,<br>799-811.                                                                               | 7.8 | 36        |
| 85 | Ca(BH <sub>4</sub> ) <sub>2</sub> + MgH <sub>2</sub> : Desorption Reaction and Role of Mg on Its<br>Reversibility. Journal of Physical Chemistry C, 2013, 117, 3846-3852.                 | 3.1 | 35        |
| 86 | Enhanced volumetric hydrogen density in sodium alanate by compaction. Journal of Power Sources, 2011, 196, 9254-9259.                                                                     | 7.8 | 32        |
| 87 | Design, sorption behaviour and energy management in a sodium alanate-based lightweight hydrogen<br>storage tank. International Journal of Hydrogen Energy, 2015, 40, 2984-2988.           | 7.1 | 32        |
| 88 | Two-body abrasive wear of nano- and microcrystalline TiC–Ni-based thermal spray coatings. Surface and Coatings Technology, 2006, 200, 5037-5047.                                          | 4.8 | 31        |
| 89 | Improved hydrogen sorption of sodium alanate by optimized processing. Journal of Alloys and Compounds, 2008, 465, 310-316.                                                                | 5.5 | 31        |
| 90 | Effect of Fe additive on the hydrogenation-dehydrogenation properties of 2LiHÂ+ÂMgB 2 /2LiBH 4 Â+ÂMgH 2<br>system. Journal of Power Sources, 2015, 284, 606-616.                          | 7.8 | 31        |

| #   | Article                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Determination of plastic constitutive properties of microparticles through single particle compression. Advanced Powder Technology, 2015, 26, 1544-1554.                                                                                                                              | 4.1  | 31        |
| 92  | Development of a modular room-temperature hydride storage system for vehicular applications.<br>Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                                                                                                    | 2.3  | 30        |
| 93  | 2LiBH4–MgH2 nanoconfined into carbon aerogel scaffold impregnated with ZrCl4 for reversible hydrogen storage. Materials Chemistry and Physics, 2016, 169, 136-141.                                                                                                                    | 4.0  | 30        |
| 94  | Improvement of thermal stability and reduction of LiBH 4 /polymer host interaction of nanoconfined<br>LiBH 4 for reversible hydrogen storage. International Journal of Hydrogen Energy, 2015, 40, 392-402.                                                                            | 7.1  | 29        |
| 95  | Metal Injection Molding (MIM) of Magnesium and Its Alloys. Metals, 2016, 6, 118.                                                                                                                                                                                                      | 2.3  | 29        |
| 96  | Design of a Nanometric AlTi Additive for MgB <sub>2</sub> -Based Reactive Hydride Composites with<br>Superior Kinetic Properties. Journal of Physical Chemistry C, 2018, 122, 7642-7655.                                                                                              | 3.1  | 29        |
| 97  | In Situ Formation of TiB <sub>2</sub> Nanoparticles for Enhanced Dehydrogenation/Hydrogenation<br>Reaction Kinetics of LiBH <sub>4</sub> –MgH <sub>2</sub> as a Reversible Solid-State Hydrogen<br>Storage Composite System. Journal of Physical Chemistry C, 2018, 122, 11671-11681. | 3.1  | 29        |
| 98  | Ca(BH <sub>4</sub> ) <sub>2</sub> –Mg <sub>2</sub> NiH <sub>4</sub> : on the pathway to a<br>Ca(BH <sub>4</sub> ) <sub>2</sub> system with a reversible hydrogen cycle. Chemical Communications,<br>2016, 52, 4836-4839.                                                              | 4.1  | 28        |
| 99  | Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition.<br>Chemistry - A European Journal, 2017, 23, 9766-9771.                                                                                                                                   | 3.3  | 28        |
| 100 | Production of nanocrystalline cermet thermal spray powders for wear resistant coatings by<br>high-energy milling. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2003, 356, 114-121.                                          | 5.6  | 27        |
| 101 | Magnesium powder injection moulding for biomedical application. Powder Metallurgy, 2014, 57, 331-340.                                                                                                                                                                                 | 1.7  | 27        |
| 102 | A novel catalytic route for hydrogenation–dehydrogenation of 2LiH + MgB <sub>2</sub> via in situ<br>formed core–shell Li <sub>x</sub> TiO <sub>2</sub> nanoparticles. Journal of Materials Chemistry A,<br>2017, 5, 12922-12933.                                                      | 10.3 | 27        |
| 103 | Low-temperature superplasticity in ultrafine-grained Ti5Si3–TiAl composites. Scripta Materialia, 2008, 59, 455-458.                                                                                                                                                                   | 5.2  | 25        |
| 104 | Characterization of Hydrogen Storage Materials and Systems with Photons and Neutrons. Advanced Engineering Materials, 2011, 13, 730-736.                                                                                                                                              | 3.5  | 25        |
| 105 | Chemical State, Distribution, and Role of Ti- and Nb-Based Additives on the<br>Ca(BH <sub>4</sub> ) <sub>2</sub> System. Journal of Physical Chemistry C, 2013, 117, 4394-4403.                                                                                                       | 3.1  | 25        |
| 106 | Structural and kinetic investigation of the hydride composite Ca(BH <sub>4</sub> ) <sub>2</sub> +<br>MgH <sub>2</sub> system doped with NbF <sub>5</sub> for solid-state hydrogen storage. Physical<br>Chemistry Chemical Physics, 2015, 17, 27328-27342.                             | 2.8  | 25        |
| 107 | Changing the dehydrogenation pathway of LiBH <sub>4</sub> –MgH <sub>2</sub> via nanosized<br>lithiated TiO <sub>2</sub> . Physical Chemistry Chemical Physics, 2017, 19, 7455-7460.                                                                                                   | 2.8  | 25        |
| 108 | Improved kinetic behaviour of Mg(NH2)2-2LiH doped with nanostructured K-modified-LixTiyOz for hydrogen storage. Scientific Reports, 2020, 10, 8.                                                                                                                                      | 3.3  | 25        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The effect of ultrafine grained microstructures on the hot-workability of intermetallic/ceramic composites based on 1 <sup>3</sup> -TiAl. Intermetallics, 2001, 9, 45-49.                        | 3.9 | 24        |
| 110 | Ca(BH <sub>4</sub> ) <sub>2</sub> â^'MgF <sub>2</sub> Reversible Hydrogen Storage: Reaction<br>Mechanisms and Kinetic Properties. Journal of Physical Chemistry C, 2011, 115, 3762-3768.         | 3.1 | 24        |
| 111 | Photocatalytic degradation of oxalic and dichloroacetic acid on TiO2 coated metal substrates.<br>Catalysis Today, 2013, 209, 84-90.                                                              | 4.4 | 24        |
| 112 | Influence of spraying parameters on cold gas spraying of iron aluminide intermetallics. Surface and<br>Coatings Technology, 2015, 268, 99-107.                                                   | 4.8 | 24        |
| 113 | Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications. Jom, 2016, 68, 1191-1197.                                                                           | 1.9 | 24        |
| 114 | Fundamental Material Properties of the 2LiBH4-MgH2 Reactive Hydride Composite for Hydrogen<br>Storage: (I) Thermodynamic and Heat Transfer Properties. Energies, 2018, 11, 1081.                 | 3.1 | 24        |
| 115 | Advanced Alumina Composites Reinforced with Titaniumâ€Based Alloys. Journal of the American Ceramic<br>Society, 2001, 84, 1509-1513.                                                             | 3.8 | 23        |
| 116 | MgH2 as dopant for improved activation of commercial Mg ingot. Journal of Alloys and Compounds, 2013, 575, 364-369.                                                                              | 5.5 | 23        |
| 117 | Microstructures and properties of nanostructured thermal sprayed coatings using high-energy milled cermet powders. Surface and Coatings Technology, 2005, 195, 344-357.                          | 4.8 | 22        |
| 118 | Processing and Properties of Intermetallic/Ceramic Composites with Interpenetrating<br>Microstructure. Journal of the American Ceramic Society, 1998, 81, 2504-2506.                             | 3.8 | 22        |
| 119 | Basic principles and application potentials of cold gas spraying. Materialwissenschaft Und<br>Werkstofftechnik, 2010, 41, 575-584.                                                               | 0.9 | 22        |
| 120 | Air-stable metal hydride-polymer composites of Mg(NH2)2–LiH and TPX™. Materials Today Energy, 2018,<br>10, 98-107.                                                                               | 4.7 | 22        |
| 121 | Efficient Synthesis of Alkali Borohydrides from Mechanochemical Reduction of Borates Using<br>Magnesium–Aluminum-Based Waste. Metals, 2019, 9, 1061.                                             | 2.3 | 22        |
| 122 | Cold sprayed WO <sub>3</sub> and TiO <sub>2</sub> electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications. Dalton Transactions, 2017, 46, 12811-12823. | 3.3 | 21        |
| 123 | Fundamental Material Properties of the 2LiBH4-MgH2 Reactive Hydride Composite for Hydrogen<br>Storage: (II) Kinetic Properties. Energies, 2018, 11, 1170.                                        | 3.1 | 21        |
| 124 | Tuning the reaction mechanism and hydrogenation/dehydrogenation properties of 6Mg(NH2)29LiH<br>system by adding LiBH4. International Journal of Hydrogen Energy, 2019, 44, 11920-11929.          | 7.1 | 21        |
| 125 | Optimization Adhesion in Cold Spraying onto Hard Substrates: A Case Study for Brass Coatings.<br>Journal of Thermal Spray Technology, 2019, 28, 124-134.                                         | 3.1 | 21        |
| 126 | Catalyzed Na2LiAlH6 for hydrogen storage. Journal of Alloys and Compounds, 2005, 404-406, 771-774.                                                                                               | 5.5 | 20        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Thermodynamic properties and absorption–desorption kinetics of Mg87Ni10Al3 alloy synthesised by reactive ball milling under H2 atmosphere. Journal of Alloys and Compounds, 2005, 404-406, 27-30.                         | 5.5 | 20        |
| 128 | SANS/USANS investigations of nanocrystalline MgH2 for reversible storage of hydrogen. Physica B:<br>Condensed Matter, 2006, 385-386, 630-632.                                                                             | 2.7 | 20        |
| 129 | A search for new Mg- and K-containing alanates for hydrogen storage. International Journal of<br>Hydrogen Energy, 2009, 34, 4582-4586.                                                                                    | 7.1 | 20        |
| 130 | Structural analysis of calcium reactive hydride composite for solid state hydrogen storage. Journal of Applied Crystallography, 2014, 47, 67-75.                                                                          | 4.5 | 20        |
| 131 | First Direct Study of the Ammonolysis Reaction in the Most Common Alkaline and Alkaline Earth Metal<br>Hydrides by <i>in Situ</i> SR-PXD. Journal of Physical Chemistry C, 2015, 119, 934-943.                            | 3.1 | 20        |
| 132 | Charge Transfer in c-Si(n <sup>++</sup> )/TiO <sub>2</sub> (ALD) at the Amorphous/Anatase Transition:<br>A Transient Surface Photovoltage Spectroscopy Study. ACS Applied Materials & Interfaces, 2020, 12,<br>3140-3149. | 8.0 | 20        |
| 133 | Designing an AB2-Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept. Energies, 2020, 13, 2751.                                                                                                              | 3.1 | 20        |
| 134 | Property prediction and crack growth behavior in cold sprayed Cu deposits. Materials and Design, 2021, 206, 109826.                                                                                                       | 7.0 | 20        |
| 135 | Ion beam synthesis of deep buried NiSi2 layers in silicon by 6 MeV Ni implantation. Nuclear Instruments<br>& Methods in Physics Research B, 1991, 59-60, 655-659.                                                         | 1.4 | 19        |
| 136 | Phase stability and hydrogen desorption in a quinary equimolar mixture of light-metals borohydrides.<br>International Journal of Hydrogen Energy, 2018, 43, 16793-16803.                                                  | 7.1 | 19        |
| 137 | Size Effects of Brittle Particles in Aerosol Deposition—Molecular Dynamics Simulation. Journal of Thermal Spray Technology, 2021, 30, 503-522.                                                                            | 3.1 | 19        |
| 138 | Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH4)2–MgH2 system.<br>Journal of Alloys and Compounds, 2015, 622, 989-994.                                                                    | 5.5 | 18        |
| 139 | New synthesis route for ternary transition metal amides as well as ultrafast amide–hydride hydrogen<br>storage materials. Chemical Communications, 2016, 52, 5100-5103.                                                   | 4.1 | 18        |
| 140 | The effect of Sr(OH) <sub>2</sub> on the hydrogen storage properties of the<br>Mg(NH <sub>2</sub> ) <sub>2</sub> –2LiH system. Physical Chemistry Chemical Physics, 2017, 19,<br>8457-8464.                               | 2.8 | 18        |
| 141 | Optimization of Inconel 718 thick deposits by cold spray processing and annealing. Surface and Coatings Technology, 2019, 378, 124997.                                                                                    | 4.8 | 18        |
| 142 | Scale-up of milling in a 100ÂL device for processing of TiFeMn alloy for hydrogen storage applications:<br>Procedure and characterization. International Journal of Hydrogen Energy, 2019, 44, 29282-29290.               | 7.1 | 18        |
| 143 | Nanostructure control of materials. , 2006, , .                                                                                                                                                                           |     | 18        |
| 144 | Influence of particle size on electrochemical and gas-phase hydrogen storage in nanocrystalline Mg.<br>Journal of Alloys and Compounds, 2008, 463, 539-545.                                                               | 5.5 | 17        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
| 145 | Effect of the Partial Replacement of CaH <sub>2</sub> with CaF <sub>2</sub> in the Mixed System<br>CaH <sub>2</sub> + MgB <sub>2</sub> . Journal of Physical Chemistry C, 2014, 118, 28409-28417.                                     | 3.1  | 17          |
| 146 | New Insight on the Hydrogen Absorption Evolution of the Mg–Fe–H System under Equilibrium<br>Conditions. Metals, 2018, 8, 967.                                                                                                         | 2.3  | 17          |
| 147 | 3CaH <sub>2</sub> + 4MgB <sub>2</sub> + CaF <sub>2</sub> Reactive Hydride Composite as a Potential<br>Hydrogen Storage Material: Hydrogenation and Dehydrogenation Pathway. Journal of Physical<br>Chemistry C, 2012, 116, 7207-7212. | 3.1  | 16          |
| 148 | Strainâ€Induced Phase Transformation of MCrAlY. Advanced Engineering Materials, 2015, 17, 723-731.                                                                                                                                    | 3.5  | 16          |
| 149 | Cyclic stability and structure of nanoconfined Ti-doped NaAlH 4. International Journal of Hydrogen<br>Energy, 2016, 41, 4159-4167.                                                                                                    | 7.1  | 16          |
| 150 | Li <sub>2</sub> NHâ€LiBH <sub>4</sub> : a Complex Hydride with Near Ambient Hydrogen Adsorption and<br>Fast Lithium Ion Conduction. Chemistry - A European Journal, 2018, 24, 1342-1347.                                              | 3.3  | 16          |
| 151 | Conversion of magnesium waste into a complex magnesium hydride system:<br>Mg(NH <sub>2</sub> ) <sub>2</sub> –LiH. Sustainable Energy and Fuels, 2020, 4, 1915-1923.                                                                   | 4.9  | 16          |
| 152 | Features of ceramic nanoparticle deformation in aerosol deposition explored by molecular dynamics simulation. Surface and Coatings Technology, 2022, 429, 127886.                                                                     | 4.8  | 16          |
| 153 | Effect of nitrogen flow rate on microstructures and mechanical properties of metallic coatings by warm spray deposition. Surface and Coatings Technology, 2013, 232, 587-599.                                                         | 4.8  | 15          |
| 154 | Patterned CoCrMo and Al <sub>2</sub> O <sub>3</sub> surfaces for reduced free wear debris in artificial joint arthroplasty. Journal of Biomedical Materials Research - Part A, 2013, 101, 3447-3456.                                  | 4.0  | 15          |
| 155 | Metal Hydrideâ€Based Hydrogen Storage Tank Coupled with an Urban Concept Fuel Cell Vehicle: Off<br>Board Tests. Advanced Sustainable Systems, 2018, 2, 1800004.                                                                       | 5.3  | 15          |
| 156 | Solid-state additive manufacturing of porous Ti-6Al-4V by supersonic impact. Applied Materials Today, 2020, 21, 100865.                                                                                                               | 4.3  | 15          |
| 157 | The catalytic effect of Nb2O5 on the electrochemical hydrogenation of nanocrystalline magnesium.<br>Journal of Alloys and Compounds, 2006, 413, 298-301.                                                                              | 5.5  | 14          |
| 158 | Structural study of a new B-rich phase obtained by partial hydrogenation of 2NaHÂ+ÂMgB2.<br>International Journal of Hydrogen Energy, 2013, 38, 10479-10484.                                                                          | 7.1  | 14          |
| 159 | Simultaneous desorption behavior of M borohydrides and Mg2FeH6 reactive hydride composites (M =) Tj ETQq1                                                                                                                             | 1    | 4 rgBT /Ove |
| 160 | KNH <sub>2</sub> –KH: a metal amide–hydride solid solution. Chemical Communications, 2016, 52,<br>11760-11763.                                                                                                                        | 4.1  | 14          |
| 161 | Cold gas spraying – A promising technique for photoelectrodes. Catalysis Today, 2016, 260, 140-147.                                                                                                                                   | 4.4  | 14          |
| 162 | A new mutually destabilized reactive hydride system: LiBH4–Mg2NiH4. Journal of Energy Chemistry,<br>2019, 34, 240-254.                                                                                                                | 12.9 | 14          |

| #   | Article                                                                                                                                                                                                          | IF    | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 163 | Enhanced Stability of Li-RHC Embedded in an Adaptive TPXâ,,¢ Polymer Scaffold. Materials, 2020, 13, 991.                                                                                                         | 2.9   | 14        |
| 164 | Tailoring powder strengths for enhanced quality of cold sprayed Al6061 deposits. Materials and Design, 2022, 215, 110494.                                                                                        | 7.0   | 14        |
| 165 | Cold Spraying of Cu-Al-Bronze for Cavitation Protection in Marine Environments. Journal of Thermal<br>Spray Technology, 2015, 24, 126.                                                                           | 3.1   | 13        |
| 166 | Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal<br>Amidozincates. ChemSusChem, 2015, 8, 3777-3782.                                                              | 6.8   | 13        |
| 167 | Differential Scanning Calorimetry (DSC) and Synchrotron X-ray Diffraction Study of Unmilled and<br>Milled LiBH4: A Partial Release of Hydrogen at Moderate Temperatures. Crystals, 2012, 2, 1-21.                | 2.2   | 12        |
| 168 | Effect of NaH/MgB2 ratio on the hydrogen absorption kinetics of the system NaHÂ+ÂMgB2. International<br>Journal of Hydrogen Energy, 2014, 39, 5030-5036.                                                         | 7.1   | 12        |
| 169 | Transport phenomena versus intrinsic kinetics: Hydrogen sorption limiting sub-process in metal<br>hydride beds. International Journal of Hydrogen Energy, 2014, 39, 18952-18957.                                 | 7.1   | 12        |
| 170 | Influence of milling parameters on the sorption properties of the LiH–MgB2 system doped with TiCl3.<br>Journal of Alloys and Compounds, 2015, 645, S299-S303.                                                    | 5.5   | 12        |
| 171 | Synthesis of Mg 2 FeD 6 under low pressure conditions for Mg 2 FeH 6 hydrogen storage studies.<br>International Journal of Hydrogen Energy, 2017, 42, 11422-11428.                                               | 7.1   | 12        |
| 172 | Effects of Stoichiometry on the H <sub>2</sub> â€Storage Properties of<br>Mg(NH <sub>2</sub> ) <sub>2</sub> –LiH–LiBH <sub>4</sub> Triâ€Component Systems. Chemistry - an Asia<br>Journal, 2017, 12, 1758-1764.  | n 3.3 | 12        |
| 173 | InÂvitro biodegradation testing of Mg-alloy EZK400 and manufacturing of implant prototypes using PM<br>(powder metallurgy) methods. Bioactive Materials, 2018, 3, 213-217.                                       | 15.6  | 12        |
| 174 | Mechanically induced grain refinement, recovery and recrystallization of cold-sprayed iron aluminide coatings. Surface and Coatings Technology, 2019, 380, 125069.                                               | 4.8   | 12        |
| 175 | Hydrogen sorption kinetics, hydrogen permeability, and thermal properties of compacted 2LiBH4MgH2<br>doped with activated carbon nanofibers. International Journal of Hydrogen Energy, 2019, 44,<br>15218-15227. | 7.1   | 12        |
| 176 | Synthesis, structures and thermal decomposition of ammine MxB12H12complexes (M = Li, Na, Ca).<br>Dalton Transactions, 2017, 46, 7770-7781.                                                                       | 3.3   | 11        |
| 177 | Insights into the Rb–Mg–N–H System: an Ordered Mixed Amide/Imide Phase and a Disordered<br>Amide/Hydride Solid Solution. Inorganic Chemistry, 2018, 57, 3197-3205.                                               | 4.0   | 11        |
| 178 | Effect of the Process Parameters on the Energy Transfer during the Synthesis of the 2LiBH4-MgH2<br>Reactive Hydride Composite for Hydrogen Storage. Metals, 2019, 9, 349.                                        | 2.3   | 11        |
| 179 | Influence of MAX-Phase Deformability on Coating Formation by Cold Spraying. Journal of Thermal Spray Technology, 2021, 30, 617-642.                                                                              | 3.1   | 11        |
| 180 | Development and experimental validation of kinetic models for the hydrogenation/dehydrogenation of Mg/Al based metal waste for energy storage. Journal of Magnesium and Alloys, 2022, 10, 2761-2774.             | 11.9  | 11        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Nanocrystalline Mg-Based Hydrides: Hydrogen Storage for the Zero-Emission Vehicle. Materials<br>Science Forum, 2001, 360-362, 603-608.                                                                                             | 0.3  | 10        |
| 182 | Investigation of (Mg, Al, Li, H)-based hydride and alanate mixtures produced by reactive ball milling.<br>Journal of Alloys and Compounds, 2009, 476, 425-428.                                                                     | 5.5  | 10        |
| 183 | Sorption and desorption properties of a CaH2/MgB2/CaF2 reactive hydride composite as potential hydrogen storage material. Journal of Solid State Chemistry, 2011, 184, 3104-3109.                                                  | 2.9  | 10        |
| 184 | Mechanical characterization of mechanically alloyed ultrafine-grained Ti5Si3+40vol% γ-TiAl<br>composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2013, 579, 18-25. | 5.6  | 10        |
| 185 | Cold Spraying of Amorphous Cu50Zr50 Alloys. Journal of Thermal Spray Technology, 2014, 24, 108.                                                                                                                                    | 3.1  | 10        |
| 186 | A new potassium-based intermediate and its role in the desorption properties of the K–Mg–N–H<br>system. Physical Chemistry Chemical Physics, 2016, 18, 3910-3920.                                                                  | 2.8  | 10        |
| 187 | Kinetic alteration of the 6Mg(NH <sub>2</sub> 2–9LiH–LiBH <sub>4</sub> system by co-adding YCl <sub>3</sub> and Li <sub>3</sub> N. Physical Chemistry Chemical Physics, 2017, 19, 32105-32115.                                     | 2.8  | 10        |
| 188 | Process Selection for the Fabrication of Cavitation Erosion-Resistant Bronze Coatings by Thermal and<br>Kinetic Spraying in Maritime Applications. Journal of Thermal Spray Technology, 2021, 30, 1310-1328.                       | 3.1  | 10        |
| 189 | In Situ X-ray Diffraction Studies on the De/rehydrogenation Processes of the<br>K <sub>2</sub> [Zn(NH <sub>2</sub> ) <sub>4</sub> ]-8LiH System. Journal of Physical Chemistry C, 2017,<br>121, 1546-1551.                         | 3.1  | 10        |
| 190 | Influence of Stoichiometry on the Hydrogen Sorption Behavior in the LiF–MgB <sub>2</sub> System.<br>Journal of Physical Chemistry C, 2012, 116, 7010-7015.                                                                         | 3.1  | 9         |
| 191 | Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography. Journal of Power Sources, 2016, 328, 567-577.                                                   | 7.8  | 9         |
| 192 | Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction.<br>Journal of Thermal Spray Technology, 2017, 26, 265-277.                                                                        | 3.1  | 9         |
| 193 | Enhancement Effect of Bimetallic Amide K2Mn(NH2)4 and In-Situ Formed KH and Mn4N on the<br>Dehydrogenation/Hydrogenation Properties of Li–Mg–N–H System. Energies, 2019, 12, 2779.                                                 | 3.1  | 9         |
| 194 | Characterization of BiVO4 powders and cold gas sprayed layers by surface photovoltage techniques.<br>Catalysis Today, 2019, 321-322, 34-40.                                                                                        | 4.4  | 9         |
| 195 | Effects of Ni-loading contents on dehydrogenation kinetics and reversibility of Mg2FeH6.<br>International Journal of Hydrogen Energy, 2021, 46, 32099-32109.                                                                       | 7.1  | 9         |
| 196 | A hydride composite featuring mutual destabilisation and reversible boron exchange:<br>Ca(BH <sub>4</sub> ) <sub>2</sub> –Mg <sub>2</sub> NiH <sub>4</sub> . Journal of Materials Chemistry<br>A, 2018, 6, 17929-17946.            | 10.3 | 8         |
| 197 | Characterization of LiBH <sub>4</sub> –MgH <sub>2</sub> Reactive Hydride Composite System with<br>Scattering and Imaging Methods Using Neutron and Synchrotron Radiation. Advanced Engineering<br>Materials, 2021, 23, 2100294.    | 3.5  | 8         |
| 198 | FUELS – HYDROGEN STORAGE   High Temperature Hydrides. , 2009, , 459-472.                                                                                                                                                           |      | 7         |

12

| #   | Article                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | NaAlH4 production from waste aluminum by reactive ball milling. International Journal of Hydrogen<br>Energy, 2014, 39, 9877-9882.                                                                                                                                                                 | 7.1 | 7         |
| 200 | Coating formation, fracture mode and cavitation performance of Fe40Al deposited by cold gas spraying. Surface Engineering, 2015, 31, 853-859.                                                                                                                                                     | 2.2 | 7         |
| 201 | Synchrotron Diffraction Studies of Hydrogen Absorption/Desorption on CaH2 + MgB2 Reactive<br>Hydride Composite Mixed With Fluorinated Compounds. Journal of Physical Chemistry C, 2015, 119,<br>11430-11437.                                                                                      | 3.1 | 7         |
| 202 | Optimized photoactive coatings prepared with functionalized TiO2. International Journal of Hydrogen Energy, 2019, 44, 31800-31807.                                                                                                                                                                | 7.1 | 7         |
| 203 | Using the Emission of Muonic X-rays as a Spectroscopic Tool for the Investigation of the Local<br>Chemistry of Elements. Nanomaterials, 2020, 10, 1260.                                                                                                                                           | 4.1 | 7         |
| 204 | Ti-Al Alloys Prepared by Ball Milling and Hot Isostatic Pressing. Materials Research Society Symposia<br>Proceedings, 1992, 288, 873.                                                                                                                                                             | 0.1 | 6         |
| 205 | Processing and Characterization of Novel Intermetallic/Ceramic Composites. Materials Science Forum, 1998, 269-272, 37-46.                                                                                                                                                                         | 0.3 | 6         |
| 206 | Compaction of High-Energy Milled TiAlSi Powders by HIP: Simple Estimation of the Finest Grain Size<br>Achievable in Fully Dense Materials. Advanced Engineering Materials, 2001, 3, 238-242.                                                                                                      | 3.5 | 6         |
| 207 | Submicron-grained multiphase TiAlSi alloys: Processing, characterization, and microstructural design. Journal of Materials Research, 2001, 16, 1850-1861.                                                                                                                                         | 2.6 | 6         |
| 208 | Influence of the Nb2O5 distribution on the electrochemical hydrogenation of nanocrystalline magnesium. Journal of Alloys and Compounds, 2007, 434-435, 753-755.                                                                                                                                   | 5.5 | 6         |
| 209 | Cold spraying of Cu-Al-Bronze for cavitation protection in marine environments.<br>Materialwissenschaft Und Werkstofftechnik, 2014, 45, 708-716.                                                                                                                                                  | 0.9 | 6         |
| 210 | A comprehensive study on lithium-based reactive hydride composite (Li-RHC) as a reversible solid-state hydrogen storage system toward potential mobile applications. RSC Advances, 2021, 11, 23122-23135.                                                                                         | 3.6 | 6         |
| 211 | Sustainable NaAlH <sub>4</sub> production from recycled automotive Al alloy. Green Chemistry, 2022, 24, 4153-4163.                                                                                                                                                                                | 9.0 | 6         |
| 212 | An effective activation method for industrially produced TiFeMn powder for hydrogen storage.<br>Journal of Alloys and Compounds, 2022, 919, 165847.                                                                                                                                               | 5.5 | 6         |
| 213 | Nanocrystalline Mg-Based Hydrides: Hydrogen Storage for the Zero-Emission Vehicle. Journal of<br>Metastable and Nanocrystalline Materials, 2001, 10, 603-608.                                                                                                                                     | 0.1 | 5         |
| 214 | Research with Neutron and Synchrotron Radiation on Aerospace and Automotive Materials and Components. Advanced Engineering Materials, 2011, 13, 637-657.                                                                                                                                          | 3.5 | 5         |
| 215 | Cold Gas Sprayed TiO2-Based Electrodes for the Photo-Induced Water Oxidation. ECS Transactions, 2014, 58, 21-30.                                                                                                                                                                                  | 0.5 | 5         |
| 216 | Scattering influences in quantitative fission neutron radiography for the in situ analysis of hydrogen<br>distribution in metal hydrides. Nuclear Instruments and Methods in Physics Research, Section A:<br>Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 797, 158-164. | 1.6 | 5         |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Modeling the kinetic behavior of the Li-RHC system for energy-hydrogen storage: (I) absorption.<br>International Journal of Hydrogen Energy, 2021, 46, 32110-32125.                                                              | 7.1  | 5         |
| 218 | Nanocrystalline Composites for Thermal Spray Applications. Journal of Metastable and Nanocrystalline Materials, 2000, 8, 933-940.                                                                                                | 0.1  | 4         |
| 219 | Nanocrystalline Composites for Thermal Spray Applications. Materials Science Forum, 2000, 343-346, 933-940.                                                                                                                      | 0.3  | 4         |
| 220 | Mechanical behavior and advanced processing of nano- and submicron-grained intermetallic compounds based on Î <sup>3</sup> -TiAl. Scripta Materialia, 2001, 44, 1479-1482.                                                       | 5.2  | 4         |
| 221 | Advanced Alumina Composites Reinforced with Nb-Based Alloys. Advanced Engineering Materials, 2002,<br>4, 121.                                                                                                                    | 3.5  | 4         |
| 222 | TiC-Based Cermet Coatings: Advanced Wear Performance by Nanocrystalline Microstructure.<br>Advanced Engineering Materials, 2006, 8, 427-433.                                                                                     | 3.5  | 4         |
| 223 | Engineering Solutions in Scale-Up and Tank Design for Metal Hydrides. Materials Science Forum, 0, 941, 2220-2225.                                                                                                                | 0.3  | 4         |
| 224 | Chemical and photoelectrochemical instability of amorphous TiO <sub>2</sub> layers quantified by spectroscopic ellipsometry. Journal of Materials Chemistry A, 2020, 8, 18173-18179.                                             | 10.3 | 4         |
| 225 | Aerosol Deposition of Ti3SiC2-MAX-Phase Coatings. Journal of Thermal Spray Technology, 2021, 30, 1121-1135.                                                                                                                      | 3.1  | 4         |
| 226 | Hydrogenation via a low energy mechanochemical approach: the MgB <sub>2</sub> case. JPhys Energy, 2021, 3, 044001.                                                                                                               | 5.3  | 4         |
| 227 | Welcome to Hydrogen—A New International and Interdisciplinary Open Access Journal of Growing<br>Interest in Our Society. Hydrogen, 2020, 1, 90-92.                                                                               | 3.4  | 4         |
| 228 | Reactive Hydride Composite Confined in a Polymer Matrix: New Insights into the Desorption and<br>Absorption of Hydrogen in a Storage Material with High Cycling Stability. Advanced Materials<br>Technologies, 2022, 7, 2101584. | 5.8  | 4         |
| 229 | Inkjet Printing of Functionalized TiO2 Catalytic Layer for Water Oxidation Reaction. Materials<br>Research Society Symposia Proceedings, 2015, 1776, 13-17.                                                                      | 0.1  | 3         |
| 230 | Hydrogenation Study of NaF/NaH/MgB2 Reactive Hydride Composites. Journal of Physical Chemistry C,<br>2017, 121, 4093-4102.                                                                                                       | 3.1  | 3         |
| 231 | Aerosol-Deposited BiVO4 Photoelectrodes for Hydrogen Generation. Journal of Thermal Spray<br>Technology, 2021, 30, 603-616.                                                                                                      | 3.1  | 3         |
| 232 | Metal Injection Molding (MIM) of Mg-Alloys. Minerals, Metals and Materials Series, 2018, , 239-251.                                                                                                                              | 0.4  | 3         |
| 233 | A Novel Emergency Gas-to-Power System Based on an Efficient and Long-Lasting Solid-State Hydride<br>Storage System: Modeling and Experimental Validation. Energies, 2022, 15, 844.                                               | 3.1  | 3         |
| 234 | Mechanisms of Phase Formation During Milling in the Ternary Immiscible AG-CU-FE System. Materials<br>Research Society Symposia Proceedings, 1995, 400, 25.                                                                       | 0.1  | 2         |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | On the Hydrogenation of a NaH/AlB <sub>2</sub> Mixture. Journal of Physical Chemistry C, 2015, 119, 22826-22831.                                                         | 3.1 | 2         |
| 236 | Enhanced Hydrogen Storage Properties of Li-RHC System with In-House Synthesized AlTi3<br>Nanoparticles. Energies, 2021, 14, 7853.                                        | 3.1 | 2         |
| 237 | De-hydrogenation/Rehydrogenation Properties and Reaction Mechanism of AmZn(NH2)n-2nLiH Systems<br>(A = Li, K, Na, and Rb). Sustainability, 2022, 14, 1672.               | 3.2 | 2         |
| 238 | Sinterforging and Indentation Creep of Nanophase TiAl. Materials Science Forum, 1997, 235-238, 881-886.                                                                  | 0.3 | 1         |
| 239 | Nanocrystalline Mg-based hydrides for hydrogen storage. Materials Research Society Symposia<br>Proceedings, 2001, 676, 451.                                              | 0.1 | 1         |
| 240 | Effect of Nb2O5 Content on Hydrogen Reaction Kinetics of Mg ChemInform, 2004, 35, no.                                                                                    | 0.0 | 1         |
| 241 | Nanocrystalline Metal Hydrides for Hydrogen Storage. , 2006, , 141-145.                                                                                                  |     | 1         |
| 242 | Cold gas spraying of semiconductor coatings for the photooxidation of water. Proceedings of SPIE, 2013, , .                                                              | 0.8 | 1         |
| 243 | Nanocrystalline light metal hydrides for hydrogen storage. , 2006, , 266-302.                                                                                            |     | 1         |
| 244 | Knowledge-based Optimization of Cold Spray for Aircraft Component Repair. , 2021, , .                                                                                    |     | 1         |
| 245 | Effect of the particle size evolution on the hydrogen storage performance of KH doped<br>Mg(NH2)2 + 2LiH. Journal of Materials Science, 0, , .                           | 3.7 | 1         |
| 246 | Modeling of the Mechanical Alloying Process in Binary Systems. Materials Research Society Symposia<br>Proceedings, 1995, 400, 19.                                        | 0.1 | 0         |
| 247 | The Effects of Elevated Temperature Deformation on Nanocrystalline Titanium-Aluminum. Materials<br>Research Society Symposia Proceedings, 1995, 400, 275.                | 0.1 | 0         |
| 248 | Mechanical Properties of Intermetallic/Ceramic Composites Prepared by High Energy Milling. Journal of Metastable and Nanocrystalline Materials, 1999, 2-6, 575-580.      | 0.1 | 0         |
| 249 | Hot-Forming of Silicide-Dispersion-Strengthened Titanium Aluminides (SDS-TiAl) with Grain Sizes in the Submicron Range. Materials Science Forum, 2000, 343-346, 623-628. | 0.3 | 0         |
| 250 | High Energy Milling of Si-Doped Titanium Aluminides– General Problems and Potential Applications.<br>Materials Science Forum, 2002, 386-388, 521-528.                    | 0.3 | 0         |
| 251 | Cycling and Thermal Stability of Nanostructured MgH2—Cr2O3 Composite for Hydrogen Storage<br>ChemInform, 2003, 34, no.                                                   | 0.0 | 0         |
| 252 | Hydrogenation of nanocrystalline Mg-based alloys. Materials Research Society Symposia Proceedings,<br>2003, 801, 96.                                                     | 0.1 | 0         |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Nanocrystalline Intermetallic Mg <sub>2</sub> Ni Produced in a Batch Scale Mill. Materials<br>Science Forum, 2006, 509, 141-146.                                                                 | 0.3 | 0         |
| 254 | Hydrogen Sorption Properties of the Intermetallic Mg2Ni Obtained by Using a Simoloyer Ball Milling.<br>IngenierÃa Investigación Y TecnologÃa, 2010, 11, 325-332.                                 | 0.1 | 0         |
| 255 | Characterization of hydrogen storage materials both at the laboratory level and at the scale for prototype tanks. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s42-s42. | 0.3 | Ο         |
| 256 | Design of a Reference Model for Fast Optimization of Photo-Electrochemical Cells. ECS Meeting Abstracts, 2020, MA2020-02, 3129-3129.                                                             | 0.0 | 0         |
| 257 | Tailoring nanocrystalline materials towards potential applications. International Journal of<br>Materials Research, 2022, 94, 610-614.                                                           | 0.3 | 0         |
| 258 | Design of a reference model for fast optimization of photo-electrochemical cells. Sustainable Energy and Fuels, 2022, 6, 1489-1498.                                                              | 4.9 | 0         |
| 259 | Hydrogen Sorption of Nanocrystalline Mg at Reduced Temperatures by Metal-Oxide Catalysts.<br>Advanced Engineering Materials, 2001, 3, 487-490.                                                   | 3.5 | Ο         |