Luiz Alberto Colnago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6949089/publications.pdf

Version: 2024-02-01

191 papers 3,815 citations

32 h-index 214800 47 g-index

193 all docs 193
docs citations

193 times ranked 3973 citing authors

#	Article	IF	Citations
1	NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat protein. Science, 1991, 252, 1303-1305.	12.6	166
2	Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy. Geoderma, 2004, 118, 181-190.	5.1	145
3	Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Industrial Crops and Products, 2013, 45, 208-214.	5.2	95
4	Protein Structure in KBr Pellets by Infrared Spectroscopy. Analytical Biochemistry, 1998, 259, 136-141.	2.4	91
5	Conformation of ? zeins in solid state by Fourier transform IR. Biopolymers, 2003, 72, 421-426.	2.4	88
6	Detection and quantification of milk adulteration using time domain nuclear magnetic resonance (TD-NMR). Microchemical Journal, 2016, 124, 15-19.	4.5	84
7	A rapid and automated low resolution NMR method to analyze oil quality in intact oilseeds. Analytica Chimica Acta, 2007, 596, 325-329.	5.4	77
8	Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Scientific Reports, 2017, 7, 41193.	3.3	61
9	Rapid analyses of oil and fat content in agriâ€food products using continuous wave free precession time domain NMR. Magnetic Resonance in Chemistry, 2011, 49, S113-20.	1.9	60
10	A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers. Carbohydrate Polymers, 2006, 64, 127-133.	10.2	59
11	Why is Inline NMR Rarely Used as Industrial Sensor? Challenges and Opportunities. Chemical Engineering and Technology, 2014, 37, 191-203.	1.5	57
12	13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil. Geoderma, 2008, 146, 425-433.	5.1	52
13	Conformation of the Z19 Prolamin by FTIR, NMR, and SAXS. Journal of Agricultural and Food Chemistry, 2004, 52, 2382-2385.	5.2	50
14	Characterisation of zein–oleic acid films and applications in fruit coating. International Journal of Food Science and Technology, 2011, 46, 2145-2152.	2.7	49
15	Flooded soybean metabolomic analysis reveals important primary and secondary metabolites involved in the hypoxia stress response and tolerance. Environmental and Experimental Botany, 2018, 153, 176-187.	4.2	49
16	High-Throughput, Non-Destructive Determination of Oil Content in Intact Seeds by Continuous Wave-Free Precession NMR. Analytical Chemistry, 2007, 79, 1271-1274.	6.5	48
17	Spectroscopic characterization and structural modeling of prolamin from maize and pearl millet. European Biophysics Journal, 2004, 33, 335-43.	2.2	47
18	Thallationâ€iodination studies of heterocyclic systems. Journal of Heterocyclic Chemistry, 1979, 16, 993-996.	2.6	44

#	Article	IF	Citations
19	Study of liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel). Biotechnology for Biofuels, 2015, 8, 12.	6.2	41
20	A laser-induced fluorescence spectroscopic study of organic matter in a Brazilian Oxisol under different tillage systems. Geoderma, 2007, 138, 20-24.	5.1	40
21	Fast and simultaneous measurement of longitudinal and transverse NMR relaxation times in a single continuous wave free precession experiment. Journal of Magnetic Resonance, 2005, 173, 34-39.	2.1	39
22	High-throughput non-destructive nuclear magnetic resonance method to measure intramuscular fat content in beef. Analytical and Bioanalytical Chemistry, 2009, 393, 1357-1360.	3.7	39
23	A kinetic model for Xylella fastidiosa adhesion, biofilm formation, and virulence. FEMS Microbiology Letters, 2004, 236, 313-318.	1.8	38
24	Classification of intact fresh plums according to sweetness using time-domain nuclear magnetic resonance and chemometrics. Microchemical Journal, 2013, 108, 14-17.	4.5	38
25	Monitoring the Transesterification Reaction Used in Biodiesel Production, with a Low Cost Unilateral Nuclear Magnetic Resonance Sensor. Energy & Samp; Fuels, 2011, 25, 2696-2701.	5.1	37
26	Mate extract as feed additive for improvement of beef quality. Food Research International, 2017, 99, 336-347.	6.2	37
27	Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. International Journal of Biological Macromolecules, 2017, 96, 361-369.	7.5	37
28	Controlled release of nitrogen using urea-melamine-starch composites. Journal of Cleaner Production, 2019, 217, 448-455.	9.3	37
29	A fast and non-destructive method to discriminate beef samples using TD-NMR. Food Control, 2014, 38, 204-208.	5.5	36
30	Physico-chemical assessment of [Mg-Al-PO4]-LDHs obtained by structural reconstruction in high concentration of phosphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 53-62.	4.7	36
31	Impact of chemotherapy on metabolic reprogramming: Characterization of the metabolic profile of breast cancer MDA-MB-231 cells using 1 H HR-MAS NMR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 324-328.	2.8	35
32	Evaluation of chitosan crystallinity: A high-resolution solid-state NMR spectroscopy approach. Carbohydrate Polymers, 2020, 250, 116891.	10.2	35
33	Continuous wave free precession. Analytica Chimica Acta, 2003, 478, 313-320.	5.4	34
34	Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics. Talanta, 2013, 108, 88-91.	5.5	34
35	Quantitative Analysis Using Steady-State Free Precession Nuclear Magnetic Resonance. Analytical Chemistry, 2000, 72, 2401-2405.	6.5	33
36	Preparation and Characterization of Amylose Inclusion Complexes for Drug Delivery Applications. Journal of Pharmaceutical Sciences, 2016, 105, 231-241.	3.3	33

#	Article	IF	CITATIONS
37	Study of the conformation of \hat{I}^3 -zeins in purified maize protein bodies by FTIR and NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2005, 383, 291-296.	3.7	32
38	Crystal Structure of a Schistosoma mansoni Septin Reveals the Phenomenon of Strand Slippage in Septins Dependent on the Nature of the Bound Nucleotide. Journal of Biological Chemistry, 2014, 289, 7799-7811.	3.4	32
39	Non-invasive spectroscopic methods to estimate orange firmness, peel thickness, and total pectin content. Microchemical Journal, 2017, 133, 168-174.	4.5	31
40	Qualitative analysis by online nuclear magnetic resonance using Carr–Purcell–Meiboom–Gill sequence with low refocusing flip angles. Talanta, 2011, 84, 84-88.	5.5	30
41	Identification of irradiation treatment in black pepper by electron paramagnetic resonance. International Journal of Food Science and Technology, 2004, 39, 395-401.	2.7	29
42	Rapid and simple determination of <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mmrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mmrow><mml:mrow><mmrow><mml:mrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><mmrow><</mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mmrow></mml:mrow></mmrow></mml:mrow></mmrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mmrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:n an >1 <td>mn2l9mn></td>	mn 2l9 mn>
43	Role of urea and melamine as synergic co-plasticizers for starch composites for fertilizer application. International Journal of Biological Macromolecules, 2020, 144, 143-150.	7.5	29
44	Monitoring electrochemical reactions in situ using steady-state free precession 13C NMR spectroscopy. Analytica Chimica Acta, 2014, 850, 1-5.	5.4	27
45	Preliminary study on the characterization of Longissimus lumborum dark cutting meat in Angus × Nellore crossbreed cattle using NMR-based metabolomics. Meat Science, 2021, 172, 108350.	5.5	27
46	Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomaterialia, 2021, 125, 312-321.	8.3	27
47	Identification of free fatty acids in maize protein bodies and purified $\hat{l}\pm$ zeins by 13C and 1H nuclear magnetic resonance. BBA - Proteins and Proteomics, 2000, 1543, 106-114.	2.1	26
48	Determination of the Moisture Content in Beef Without Weighing Using Benchtop Time-Domain Nuclear Magnetic Resonance Spectrometer and Chemometrics. Food Analytical Methods, 2012, 5, 1349-1353.	2.6	26
49	Characterization of humic acids extracted from sewage sludge-amended oxisols by electron paramagnetic resonance. Soil and Tillage Research, 2006, 91, 95-100.	5.6	24
50	Liquid-phase characterization of molecular interactions in polyunsaturated and n-fatty acid methyl esters by 1H low-field nuclear magnetic resonance. Biotechnology for Biofuels, 2015, 8, 96.	6.2	24
51	In situ analysis of copper electrodeposition reaction using unilateral NMR sensor. Journal of Magnetic Resonance, 2015, 261, 83-86.	2.1	24
52	Low field, time domain NMR in the agriculture and agrifood sectors: An overview of applications in plants, foods and biofuels. Journal of Magnetic Resonance, 2021, 323, 106899.	2.1	24
53	Structure and Dynamics of FD Coat Protein. Biophysical Journal, 1986, 49, 36-38.	0.5	22
54	Spectroscopic characterization of the exopolysaccharide of Xanthomonas axonopodis pv. citri in Cu2+ resistance mechanism. Journal of the Brazilian Chemical Society, 2011, 22, 1339-1345.	0.6	22

#	Article	IF	Citations
55	Validação de método quantitativo por RMN de ¹H para análises de formulações farmacêuticas. Quimica Nova, 2013, 36, 324-330.	³ 0.3	22
56	Measuring the solubility product constant of paramagnetic cations using time-domain nuclear magnetic resonance relaxometry. Microchemical Journal, 2015, 121, 14-17.	4.5	22
57	Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 2015, 488, 14-18.	2.4	22
58	Through-package fat determination in commercial samples of mayonnaise and salad dressing using time-domain nuclear magnetic resonance spectroscopy and chemometrics. Food Control, 2015, 48, 62-66.	5 . 5	22
59	Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy. Analytica Chimica Acta, 2017, 983, 91-95.	5.4	22
60	Portable near Infrared Spectroscopy as a Tool for Fresh Tomato Quality Control Analysis in the Field. Applied Sciences (Switzerland), 2021, 11, 3209.	2.5	22
61	Effect of residual vanadyl on the spectroscopic analysis of humic acids. Organic Geochemistry, 2006, 37, 1562-1572.	1.8	21
62	Self-aggregates of 3,6-O,O'-dimyristoylchitosan derivative are effective in enhancing the solubility and intestinal permeability of camptothecin. Carbohydrate Polymers, 2017, 177, 178-186.	10.2	21
63	Determination of physicochemical properties of biodiesel and blends using low-field NMR and multivariate calibration. Fuel, 2019, 237, 745-752.	6.4	21
64	<i>In Situ</i> Study of the Magnetoelectrolysis Phenomenon during Copper Electrodeposition Using Time Domain NMR Relaxometry. Analytical Chemistry, 2014, 86, 9391-9393.	6.5	20
65	Formation of different calcium phosphate phases on the surface of porous Al2O3-ZrO2 nanocomposites. Journal of the European Ceramic Society, 2018, 38, 743-751.	5.7	20
66	Electrochemical NMR spectroscopy: Electrode construction and magnetic sample stirring. Microchemical Journal, 2019, 146, 658-663.	4.5	20
67	Enhancing signalâ€toâ€noise ratio and resolution in lowâ€field NMR relaxation measurements using postâ€acquisition digital filters. Magnetic Resonance in Chemistry, 2019, 57, 616-625.	1.9	20
68	Metabolite profile and consumer sensory acceptability of meat from lean Nellore and AngusÂ×ÂNellore crossbreed cattle fed soybean oil. Food Research International, 2020, 132, 109056.	6.2	20
69	Mobility and Free Radical Concentration Effects in Proton–Electron Double-Resonance Imaging. Journal of Magnetic Resonance, 1998, 135, 118-125.	2.1	19
70	Flow sensitivity and coherence in steady-state free spin precession. Physical Review E, 2001, 64, 016309.	2.1	19
71	Nuclear magnetic resonance water relaxation time changes in bananas during ripening: a new mechanism. Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	3.5	19
72	Fast and Simple Nuclear Magnetic Resonance Method To Measure Conjugated Linoleic Acid in Beef. Journal of Agricultural and Food Chemistry, 2010, 58, 6562-6564.	5.2	19

#	Article	IF	Citations
73	In Situ Quantification of Cu(II) during an Electrodeposition Reaction Using Time-Domain NMR Relaxometry. Analytical Chemistry, 2012, 84, 6351-6354.	6.5	19
74	2D and 3D Spectrum Graphics of the Chemical-Morphological Domains of Complex Biomass by Low Field Proton NMR Energy Relaxation Signal Analysis. Energy & Energy & 2018, 32, 5090-5102.	5.1	19
75	Bioproduction of N-acetyl-glucosamine from colloidal α-chitin using an enzyme cocktail produced by Aeromonas caviae CHZ306. World Journal of Microbiology and Biotechnology, 2019, 35, 114.	3.6	19
76	Effect of amylolysis on the formation, the molecular, crystalline and thermal characteristics and the digestibility of retrograded starches. International Journal of Biological Macromolecules, 2020, 163, 1333-1343.	7.5	19
77	Selection for Growth and Precocity Alters Muscle Metabolism in Nellore Cattle. Metabolites, 2020, 10, 58.	2.9	19
78	Non-invasive quantification of vitamin C, citric acid, and sugar in †Valência†oranges using infrared spectroscopies. Journal of Food Science and Technology, 2021, 58, 731-738.	2.8	19
79	Application of carbon-13 nuclear magnetic resonance to the germination of soybean seeds in vivo. Journal of Agricultural and Food Chemistry, 1983, 31, 459-461.	5.2	18
80	Rapid and simultaneous relaxometric methods to study paramagnetic ion complexes in solution: An alternative to spectrophotometry. Microchemical Journal, 2015, 122, 144-148.	4.5	18
81	Thermal diffusivity and nuclear spin relaxation: A continuous wave free precession NMR study. Journal of Magnetic Resonance, 2006, 181, 29-34.	2.1	17
82	1H NMR INVESTIGATION OF OIL OXIDATION IN MACADAMIA NUTS COATED WITH ZEIN-BASED FILMS. Journal of Food Processing and Preservation, 2011, 35, 790-796.	2.0	17
83	On resonance phase alternated CWFP sequences for rapid and simultaneous measurement of relaxation times. Journal of Magnetic Resonance, 2015, 259, 174-178.	2.1	17
84	Influence of different chemical treatments on the surface of Al2O3/ZrO2 nanocomposites during biomimetic coating. Ceramics International, 2017, 43, 4272-4279.	4.8	17
85	Microscopia de varredura por força: uma ferramenta poderosa no estudo de polÃmeros. Polimeros, 1997, 7, 51-61.	0.7	16
86	Effects of Doxorubicin, Cisplatin, and Tamoxifen on the Metabolic Profile of Human Breast Cancer MCF-7 Cells As Determined by ¹ H High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. Biochemistry, 2017, 56, 2219-2224.	2.5	16
87	Valorization of mangoes with internal breakdown through the production of edible films by continuous solution casting. LWT - Food Science and Technology, 2021, 145, 111339.	5.2	16
88	Simultaneous measurements of <i>T</i> ₁ and <i>T</i> ₂ during fast polymerization reaction using continuous waveâ€free precession NMR method. Magnetic Resonance in Chemistry, 2012, 50, 534-538.	1.9	15
89	Use of Carr–Purcell pulse sequence with low refocusing flip angle to measure T1 and T2 in a single experiment. Journal of Magnetic Resonance, 2012, 214, 184-188.	2.1	15
90	Determination of Biodiesel Content in Diesel Fuel by Time-Domain Nuclear Magnetic Resonance (TD-NMR) Spectroscopy. Energy & Samp; Fuels, 2017, 31, 5120-5125.	5.1	15

#	Article	IF	Citations
91	Time-Domain Nuclear Magnetic Resonance (TD-NMR) and Chemometrics for Determination of Fat Content in Commercial Products of Milk Powder. Journal of AOAC INTERNATIONAL, 2017, 100, 330-334.	1.5	15
92	High-Pressure Microfluidization as a Green Tool for Optimizing the Mechanical Performance of All-Cellulose Composites. ACS Sustainable Chemistry and Engineering, 2018, 6, 12727-12735.	6.7	15
93	Application of time-domain NMR as a methodology to quantify adulteration of diesel fuel with soybean oil and frying oil. Fuel, 2019, 252, 567-573.	6.4	15
94	γâ€Zein secondary structure in solution by circular dichroism. Biopolymers, 2008, 89, 175-178.	2.4	14
95	Clinical Feasibility of AÃSai (Euterpe oler \tilde{A}_i cea) Pulp as an Oral Contrast Agent for Magnetic Resonance Cholangiopancreatography. Journal of Computer Assisted Tomography, 2009, 33, 666-671.	0.9	14
96	Time Domain-NMR Combined with Chemometrics Analysis: An Alternative Tool for Monitoring Diesel Fuel Quality. Energy & Samp; Fuels, 2015, 29, 2299-2303.	5.1	14
97	Quantification of paramagnetic ions in solution using time domain NMR. PROS and CONS to optical emission spectrometry method. Microchemical Journal, 2018, 137, 204-207.	4.5	14
98	Sustainable Electrocoupling of the Biogenic Valeric Acid under in Situ Low-Field Nuclear Magnetic Resonance Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 18288-18296.	6.7	14
99	Characterization of chicken muscle disorders through metabolomics, pathway analysis, and water relaxometry: a pilot study. Poultry Science, 2020, 99, 6247-6257.	3.4	14
100	Data fusion of middle-resolution NMR spectroscopy and low-field relaxometry using the Common Dimensions Analysis (ComDim) to monitor diesel fuel adulteration. Talanta, 2022, 236, 122838.	5.5	14
101	Prediction of Orange juice sensorial attributes from intact fruits by TD-NMR. Microchemical Journal, 2016, 128, 113-117.	4.5	13
102	Evaluation of the catalytic activity of oxide nanoparticles synthesized by the polymeric precursor method on biodiesel production. Journal of Materials Research, 2012, 27, 3020-3026.	2.6	12
103	Rapid method for monitoring chitosan coagulation using low-field NMR relaxometry. Carbohydrate Polymers, 2016, 150, 1-4.	10.2	12
104	Non-invasive detection of internal flesh breakdown in intact Palmer mangoes using time-domain nuclear magnetic resonance relaxometry. Microchemical Journal, 2020, 158, 105208.	4.5	12
105	In-situ MRI velocimetry of the magnetohydrodynamic effect in electrochemical cells. Journal of Magnetic Resonance, 2020, 312, 106692.	2.1	12
106	N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan: Synthesis, physicochemical and biological properties. International Journal of Biological Macromolecules, 2021, 178, 558-568.	7.5	12
107	Propriedades mecânicas e molhabilidade de filmes de zeÃnas extraÃdas de glúten de milho. Polimeros, 2013, 23, 42-48.	0.7	11
108	Time-domain NMR: A novel analytical method to quantify adulteration of ethanol fuel with methanol. Fuel, 2019, 258, 116158.	6.4	11

#	Article	IF	CITATIONS
109	Non-Invasive Detection of Adulterated Olive Oil in Full Bottles Using Time-Domain NMR Relaxometry. Journal of the Brazilian Chemical Society, 2016, , .	0.6	11
110	Fatty acid synthesis in Xylella fastidiosa: correlations between genome studies, 13C NMR data, and molecular models. Biochemical and Biophysical Research Communications, 2004, 323, 987-995.	2.1	10
111	Low-Field NMR-Electrochemical Cell For In Situ Measurements of Paramagnetic Species. ECS Transactions, 2009, 25, 215-221.	0.5	10
112	Fast Acquisition of 13C NMR Spectra using the Steady-state Free Precession Sequence. Applied Magnetic Resonance, 2011, 40, 331-338.	1.2	10
113	Nuclear magnetic resonance spectroscopic analysis of ethyl ester yield in the transesterification of vegetable oil: an accurate method for a truly quantitative analysis. Magnetic Resonance in Chemistry, 2012, 50, 1-4.	1.9	10
114	Monitoring Electrochemical Reactions in Situ with Low Field NMR: A Mini-Review. Applied Sciences (Switzerland), 2019, 9, 498.	2.5	10
115	Applications of Continuous Wave Free Precession Sequences in Low-Field, Time-Domain NMR. Applied Sciences (Switzerland), 2019, 9, 1312.	2.5	10
116	Improving in operando low field NMR copper electrodeposition analyses using inductively coupled coils. Electrochimica Acta, 2019, 298, 844-851.	5.2	10
117	Monitoring of soluble pectin content in orange juice by means of MIR and TD-NMR spectroscopy combined with machine learning. Food Chemistry, 2020, 332, 127383.	8.2	10
118	A kinetic model for Xylella fastidiosa adhesion, biofilm formation, and virulence. FEMS Microbiology Letters, 2004, 236, 313-318.	1.8	10
119	Processing of high resolution magic angle spinning spectra of breast cancer cells by the filter diagonalization method. Analyst, The, 2012, 137, 4546.	3.5	9
120	Time-domain NMR relaxometry as an alternative method for analysis of chitosan-paramagnetic ion interactions in solution. International Journal of Biological Macromolecules, 2017, 98, 228-232.	7.5	9
121	Synthesis of the $[(\hat{l}\cdot sup>6- for Synthesis of the [(\hat{l}\cdot sup>6- for Synthesis of the [(\hat{l}\cdot sup>6-6-6 for Synthesis of the [(\hat{l}\cdot sup>6-6 for Synthesis of the [(\hat{l}\cdot sup>6-6-6 for Synthesis of the [(\hat{l}\cdot sup>6-6-6-6 for Synthesis of the [(\hat{l}\cdot sup>6-6-6-6 for Synthesis of the [(\hat{l}\cdot sup>6-6-6-6-6-6-7-8-9$	2.2	9
122	Identification of primary and secondary metabolites and transcriptome profile of soybean tissues during different stages of hypoxia. Data in Brief, 2018, 21, 1089-1100.	1.0	9
123	Using T1 as a direct detection dimension in two-dimensional time-domain NMR experiments using CWFP regime. Journal of Magnetic Resonance, 2020, 311, 106666.	2.1	9
124	Influence of the cold plasma treatment on the Al2O3/ZrO2 nanocomposites surfaces. Applied Surface Science, 2020, 531, 147206.	6.1	9
125	Using TD-NMR relaxometry and 1D 1H NMR spectroscopy to evaluate aging of Nellore beef. Meat Science, 2021, 181, 108606.	5.5	9
126	Estudo de métodos de aumento de resolução de espectros de FTIR para análise de estruturas secundárias de proteÃnas. Quimica Nova, 1998, 21, 146.	0.3	8

#	Article	IF	CITATIONS
127	Uso da RMN como um sensor online em processos industriais. Quimica Nova, 2012, 35, 2019-2024.	0.3	8
128	Gadolinium(III) Complexes with N-Alkyl-N-methylglucamine Surfactants Incorporated into Liposomes as Potential MRI Contrast Agents. Bioinorganic Chemistry and Applications, 2015, 2015, 1-8.	4.1	8
129	Comparison Among MIR, NIR, and LF-NMR Techniques for Quality Control of Jam Using Chemometrics. Food Analytical Methods, 2018, 11, 2029-2034.	2.6	8
130	Metabolic alterations in conventional and genetically modified soybean plants with GmDREB2A;2 FL and GmDREB2A;2 CA transcription factors during water deficit. Plant Physiology and Biochemistry, 2019, 140, 122-135.	5.8	8
131	Measurements of water transport in a gel by Overhauser magnetic resonance imaging. Measurement Science and Technology, 1998, 9, 1982-1988.	2.6	7
132	Laser-induced fluorescence of organic matter from a Brazilian Oxisol under sewage-sludge applications. Scientia Agricola, 2006, 63, 269-275.	1.2	7
133	Nuclear magnetic resonance characterization of metabolite disorder in orange trees caused by citrus sudden death disease. Molecular Plant Pathology, 2009, 10, 51-57.	4.2	7
134	Use of the Relaxometry Technique for Quantification of Paramagnetic Ions in Aqueous Solutions and a Comparison with Other Analytical Methods. International Journal of Analytical Chemistry, 2016, 2016, 1-5.	1.0	7
135	Prediction of beef color using timeâ€domain nuclear magnetic resonance (TDâ€NMR) relaxometry data and multivariate analyses. Magnetic Resonance in Chemistry, 2016, 54, 800-804.	1.9	7
136	Selection of industrial tomatoes using TD-NMR data and computational classification methods. Microchemical Journal, 2021, 164, 106048.	4.5	7
137	Effects of dietary inclusion of yerba mate (<i>llex paraguariensis</i>) extract on lamb muscle metabolomics and physicochemical properties in meat. Journal of Animal Science, 2021, 99, .	0.5	7
138	Measuring bacterial cells size with AFM. Brazilian Journal of Microbiology, 2012, 43, 341-7.	2.0	7
139	Composite Graphite–Epoxy Electrodes for In Situ Electrochemistry Coupling with High Resolution NMR. ACS Omega, 2022, 7, 4991-5000.	3.5	7
140	Supressão das anomalias de fase e batimentos laterais em espectros de RMN 13c obtidos com a sequência de precessão livre no estado estacionário. Quimica Nova, 2010, 33, 954-956.	0.3	6
141	Solvent Suppression in High-Resolution 1H NMR Spectroscopy Using Conventional and Phase Alternated Continuous Wave Free Precession. Applied Magnetic Resonance, 2013, 44, 1265-1280.	1.2	6
142	Suppression of spectral anomalies in SSFP-NMR signal by the Krylov Basis Diagonalization Method. Journal of Magnetic Resonance, 2014, 243, 74-80.	2.1	6
143	Measuring thermal properties of oilseeds using time domain nuclear magnetic resonance spectroscopy. Journal of Food Engineering, 2016, 173, 143-149.	5.2	6
144	Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency. Phytochemical Analysis, 2017, 28, 529-540.	2.4	6

#	Article	IF	Citations
145	Power-optimized, time-reversal pulse sequence for a robust recovery of signals from rigid segments using time domain NMR. Solid State Nuclear Magnetic Resonance, 2019, 104, 101619.	2.3	6
146	Simple, Low-Cost and Long-Lasting Film for Virus Inactivation Using Avian Coronavirus Model as Challenge. International Journal of Environmental Research and Public Health, 2020, 17, 6456.	2.6	6
147	New and rapid pulse sequences for two-dimensional D-T1 correlation measurements. Journal of Magnetic Resonance, 2020, 315, 106749.	2.1	6
148	Classical Food Quality Attributes and the Metabolic Profile of Cambuci, a Native Brazilian Atlantic Rainforest Fruit. Molecules, 2021, 26, 3613.	3.8	6
149	Identification of nonâ€zein proteins in BR473 maize protein bodies by LCâ€nanoESIâ€MS/MS. Journal of Separation Science, 2009, 32, 3579-3584.	2.5	5
150	Plasma surface treatments of Al2O3/ZrO2 nanocomposites and their influence on the formation and adhesion of calcium phosphates. Applied Surface Science, 2018, 456, 552-560.	6.1	5
151	Application of low-field and medium-resolution 1H NMR spectroscopy combined with chemometric methods for automotive gasoline quality control. Fuel, 2020, 282, 118684.	6.4	5
152	Long-term lime and phosphogypsum broadcast affects phosphorus cycling in a tropical Oxisol cultivated with soybean under no-till. Nutrient Cycling in Agroecosystems, 2021, 120, 307.	2.2	5
153	Insight into morphological, physicochemical and spectroscopic properties of \hat{l}^2 -chitin nanocrystalline structures. Carbohydrate Polymers, 2021, 273, 118563.	10.2	5
154	Analyses of Biomass Products by Nuclear Magnetic Resonance Spectroscopy., 2016, , 143-172.		5
155	In-operando analysis of the corrosion patterns and rates under magnetic fields using metallic film. Npj Materials Degradation, 2022, 6, .	5.8	5
156	Impact of Cattle Feeding Strategy on the Beef Metabolome. Metabolites, 2022, 12, 640.	2.9	5
157	Determination of Quality Parameters for Mustard Sauces in Sealed Packets Using Time-Domain Nuclear Magnetic Resonance Spectroscopy and Chemometrics. Food Analytical Methods, 2015, 8, 122-125.	2.6	4
158	Quantification of protein secondary structure by 13C solid-state NMR. Analytical and Bioanalytical Chemistry, 2016, 408, 3875-3879.	3.7	4
159	Increasing the detection distance of remote NMR using wireless inductive coupling coil. Scientific Reports, 2017, 7, 12686.	3.3	4
160	Time domain NMR spectroscopy as a fast method for probing the efficiency of biomass pretreatments for second generation ethanol production. Biomass and Bioenergy, 2020, 142, 105734.	5.7	4
161	Fast-forward approach of time-domain NMR relaxometry for solid-state chemistry of chitosan. Carbohydrate Polymers, 2021, 256, 117576.	10.2	4
162	Recent 1D and 2D TD–NMR Pulse Sequences for Plant Science. Plants, 2021, 10, 833.	3.5	4

#	Article	IF	Citations
163	BRS 425: the first runner peanut cultivar related to wild ancestral species. Crop Breeding and Applied Biotechnology, 2019, 19, 373-377.	0.4	4
164	Noninvasive Analyses of Food Products Using Low-field Time-domain NMR: A Review of Relaxometry Methods. Brazilian Journal of Physics, 2022, 52, 1.	1.4	4
165	Enzymatic Activity Prediction Using Time-Domain Nuclear Magnetic Resonance (TD-NMR) and Multivariate Analysis: A Case Study Using Cassava Roots. Applied Magnetic Resonance, 2018, 49, 653-664.	1.2	3
166	Non-invasive Measurements of Oilseed Temperature in Soil and Soil Thermal Diffusivity Using Time-Domain NMR Relaxometry. Applied Magnetic Resonance, 2018, 49, 1119-1127.	1.2	3
167	Healthy and Chronic Kidney Disease (CKD) Dogs Have Differences in Serum Metabolomics and Renal Diet May Have Slowed Disease Progression. Metabolites, 2021, 11, 782.	2.9	3
168	Real-Time Monitoring Polymerization Reactions Using Dipolar Echoes in 1H Time Domain NMR at a Low Magnetic Field. Molecules, 2022, 27, 566.	3.8	3
169	Monitoring Stimulated Darkening from UV-C Light on Different Bean Genotypes by NMR Spectroscopy. Molecules, 2022, 27, 2060.	3.8	3
170	Complementary analyses of hollow cylindrical unioriented permanent magnet (HCM) with high permeability external layer. Journal of Magnetic Resonance, 2017, 283, 79-88.	2.1	2
171	Effect of cis-9, trans- 11 Conjugated Linoleic Acid (CLA) on the Metabolism Profile of Breast Cancer Cells Determined by $1\mathrm{H}$ HR-MAS NMR Spectroscopy. Journal of the Brazilian Chemical Society, 0 , , .	0.6	2
172	Mate as Dietary Supplement for Broiler Chickens: Effect on the Metabolic Profile and Redox Chemistry of Meat. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
173	Magnetic resonance studies of copper (II) sorbitol complex, in solution, reveal a supramolecular structure compatible to the crystal structure. Magnetic Resonance in Chemistry, 2019, 57, 404-411.	1.9	2
174	Fruit quality parameters and volatile compounds from †Palmer' mangoes with internal breakdown. Food Chemistry, 2022, 388, 132902.	8.2	2
175	Influence of alumina substrates open porosity on calcium phosphates formation produced by the biomimetic method. Progress in Biomaterials, 2022, 11, 263-271.	4.5	2
176	Non-Invasive Method to Predict the Composition of Requeijão Cremoso Directly in Commercial Packages Using Time Domain NMR Relaxometry and Chemometrics. Molecules, 2022, 27, 4434.	3.8	2
177	A straightforward catalytic approach to obtain deuterated chloroform at room temperature. Magnetic Resonance in Chemistry, 2020, 58, 917-920.	1.9	1
178	Phytotoxicity of Schiekia timida Seed Extracts, a Mixture of Phenylphenalenones. Molecules, 2021, 26, 4197.	3.8	1
179	NMR Relaxometry Applied to Chemical Studies of Paramagnetic Metal Cation Complexes: Fundamentals and Applications. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
180	Use of Time Domain Nuclear Magnetic Resonance Relaxometry to Monitor the Effect of Magnetic Field on the Copper Corrosion Rate in Real Time. Magnetochemistry, 2022, 8, 40.	2.4	1

#	Article	IF	CITATIONS
181	Using TD-NMR relaxometry to assess the effects of diet type and stocking rate on the incidence and degree of severity of myopathies in broilers. Microchemical Journal, 2022, 181, 107745.	4.5	1
182	Food Analysis Using Fast Steady-State Free Precession TD-NMR Relaxometric Methods., 2016,, 1-21.		0
183	Magnetic Resonance Spectroscopy Techniques to Improve Agricultural Systems. , 2019, , 131-145.		0
184	A simple, rapid, green and non-destructive 19F time-domain NMR method for directly fluorine determination in powder of mineral supplements for cattle. Microchemical Journal, 2020, 153, 104416.	4.5	0
185	Development of a platform for the production of multiple modal chelating and imaging agents using desferrioxamine and bovine albumin as a model. Chemical Papers, 2021, 75, 1157-1163.	2.2	0
186	Metabolomic signature of genetic potential for muscularity in beef cattle. Animal Biotechnology, 2021, , 1-10.	1.5	0
187	SIMULATION OF NMR SIGNALS THROUGH THE BLOCH EQUATIONS. Quimica Nova, 2014, , .	0.3	0
188	Food Analysis Using Fast Steady-State Free Precession TD-NMR Relaxometric Methods., 2018,, 1463-1482.		0
189	Luiz Alberto Colnago, a prominent researcher in the Analytical Chemistry of Agricultural Products, gave an interview to BrJAC. Brazilian Journal of Analytical Chemistry, 2019, 6, .	0.5	0
190	Effects of Citrus Sudden Death Disease on Fatty Acid Profile of Orange Tree Bark. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
191	13C ss-NMR Singular value decomposition and fitting for sorghum proteins conformation elucidation. Polimeros, 2022, 32, .	0.7	0