Fabrice Antigny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6948491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SUR1 as a New Therapeutic Target for Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2022, , .	2.9	10
2	Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules, 2022, 12, 484.	4.0	11
3	Kcnk3 dysfunction exaggerates the development of pulmonary hypertension induced by left ventricular pressure overload. Cardiovascular Research, 2021, 117, 2474-2488.	3.8	20
4	The p.E152K-STIM1 mutation deregulates Ca2+ signaling contributing to chronic pancreatitis. Journal of Cell Science, 2021, 134, .	2.0	4
5	The Experimental TASK-1 Potassium Channel Inhibitor A293 Can Be Employed for Rhythm Control of Persistent Atrial Fibrillation in a Translational Large Animal Model. Frontiers in Physiology, 2021, 12, 668267.	2.8	0
6	Involvement of CFTR in the pathogenesis of pulmonary arterial hypertension. European Respiratory Journal, 2021, 58, 2000653.	6.7	16
7	Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure. Cells, 2021, 10, 1559.	4.1	10
8	Comment on: Transcriptomic analysis of CFTR-impaired endothelial cells reveals a pro-inflammatory phenotype. European Respiratory Journal, 2021, 58, 2101365.	6.7	0
9	Sex and gender in pulmonary arterial hypertension. European Respiratory Review, 2021, 30, 200330.	7.1	31
10	Role of Store-Operated Ca2+ Entry in the Pulmonary Vascular Remodeling Occurring in Pulmonary Arterial Hypertension. Biomolecules, 2021, 11, 1781.	4.0	11
11	Specific Upregulation of TRPC1 and TRPC5 Channels by Mineralocorticoid Pathway in Adult Rat Ventricular Cardiomyocytes. Cells, 2020, 9, 47.	4.1	13
12	Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca ²⁺ Handling After Pressure Overload. Circulation, 2020, 141, 199-216.	1.6	42
13	Preliminary characterization of phosphodiesterase-9 in rodent and human pulmonary artery. Journal of Molecular and Cellular Cardiology, 2020, 140, 58.	1.9	1
14	Proteomic Analysis of KCNK3 Loss of Expression Identified Dysregulated Pathways in Pulmonary Vascular Cells. International Journal of Molecular Sciences, 2020, 21, 7400.	4.1	14
15	In vivo miR-138-5p inhibition alleviates monocrotaline-induced pulmonary hypertension and normalizes pulmonary KCNK3 and SLC45A3 expression. Respiratory Research, 2020, 21, 186.	3.6	20
16	Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension. Biomolecules, 2020, 10, 1261.	4.0	27
17	Excitation-contraction coupling and relaxation alteration in right ventricular remodelling caused by pulmonary arterial hypertension. Archives of Cardiovascular Diseases, 2020, 113, 70-84.	1.6	19
18	Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 118-131.	2.9	24

#	Article	IF	CITATIONS
19	GCN2 regulates BMP signaling: consequence for PVOD pathobiology and therapeutic management. , 2020, , .		0
20	SUR1/Kir6.2 potassium channel a new actor involved in pulmonary arterial hypertension. , 2020, , .		0
21	CFTR involvement in the pathogenesis of pulmonary arterial hypertension. , 2020, , .		Ο
22	Characterization of <i>Kcnk3</i> -Mutated Rat, a Novel Model of Pulmonary Hypertension. Circulation Research, 2019, 125, 678-695.	4.5	70
23	Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundamental and Clinical Pharmacology, 2019, 33, 524-526.	1.9	3
24	Pulmonary arterial hypertension in patient treated for multiple sclerosis with 4â€aminopyridine. Fundamental and Clinical Pharmacology, 2019, 33, 426-427.	1.9	1
25	The BET Bromodomain Inhibitor I-BET-151 Induces Structural and Functional Alterations of the Heart Mitochondria in Healthy Male Mice and Rats. International Journal of Molecular Sciences, 2019, 20, 1527.	4.1	17
26	Functional interaction between PDGFβ and GluN2B-containing NMDA receptors in smooth muscle cell proliferation and migration in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L445-L455.	2.9	12
27	<i>Bmpr2</i> Mutant Rats Develop Pulmonary and Cardiac Characteristics of Pulmonary Arterial Hypertension. Circulation, 2019, 139, 932-948.	1.6	74
28	Ca2+ handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 2018, 118, 208-224.	1.9	58
29	NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Circulation, 2018, 137, 2371-2389.	1.6	75
30	Loss of KCNK3 is a hallmark of RV hypertrophy/dysfunction associated with pulmonary hypertension. Cardiovascular Research, 2018, 114, 880-893.	3.8	52
31	Pulmonary vascular remodeling patterns and expression of general control nonderepressible 2 (GCN2) in pulmonary veno-occlusive disease. Journal of Heart and Lung Transplantation, 2018, 37, 647-655.	0.6	50
32	Ion Channels in Pulmonary Hypertension: A Therapeutic Interest?. International Journal of Molecular Sciences, 2018, 19, 3162.	4.1	61
33	NMDA receptor activation promotes vascular remodeling and pulmonary arterial hypertension. , 2018, , .		Ο
34	KCNK3 channel inactivation leads to pulmonary vascular alterations in rat. , 2018, , .		0
35	TRPC1 and TRPC4 channels functionally interact with STIM1L to promote myogenesis and maintain fast repetitive Ca2+ release in human myotubes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 806-813.	4.1	41
36	Calumenin contributes to ER-Ca2+ homeostasis in bronchial epithelial cells expressing WT and F508del mutated CFTR and to F508del-CFTR retention. Cell Calcium, 2017, 62, 47-59.	2.4	11

#	Article	IF	CITATIONS
37	Use of β-Blockers in Pulmonary Hypertension. Circulation: Heart Failure, 2017, 10, .	3.9	56
38	TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. European Respiratory Journal, 2017, 50, 1700754.	6.7	60
39	T-type Ca2+ channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1631-1641.	4.1	21
40	Pulmonary endothelial cell DNA methylation signature in pulmonary arterial hypertension. Oncotarget, 2017, 8, 52995-53016.	1.8	42
41	Response to Letter Regarding Article, "Mitomycin-Induced Pulmonary Veno-Occlusive Disease: Evidence From Human Disease and Animal Model― Circulation, 2016, 133, e592-3.	1.6	4
42	0481 : Potassium channel subfamily K member 3 (KCNK3) contributes to the development of pulmonary arterial hypertension. Archives of Cardiovascular Diseases Supplements, 2016, 8, 247-248.	0.0	0
43	Transient Receptor Potential Canonical (TRPC)/Orai1-dependent Store-operated Ca2+ Channels. Journal of Biological Chemistry, 2016, 291, 13394-13409.	3.4	69
44	Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension. Circulation, 2016, 133, 1371-1385.	1.6	141
45	Characterization of a new rat model of heritable PAH. , 2016, , .		Ο
46	LATE-BREAKING ABSTRACT: KCNK3 dysfunction contributes to the development of pulmonary arterial hypertension – Characterization of Kcnk3 deficient rats. , 2016, , .		0
47	A Simple Method to Assess <i>In Vivo</i> Proliferation in Lung Vasculature with EdU: The Case of MMC-Induced PVOD in Rat. Analytical Cellular Pathology, 2015, 2015, 1-6.	1.4	6
48	Nebivolol for Improving Endothelial Dysfunction, Pulmonary Vascular Remodeling, and Right Heart Function inÂPulmonary Hypertension. Journal of the American College of Cardiology, 2015, 65, 668-680.	2.8	119
49	Chemotherapy-Induced Pulmonary Hypertension. American Journal of Pathology, 2015, 185, 356-371.	3.8	149
50	Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension. Circulation, 2015, 131, 1006-1018.	1.6	441
51	Mitomycin-Induced Pulmonary Veno-Occlusive Disease. Circulation, 2015, 132, 834-847.	1.6	103
52	STIM1L traps and gates Orai1 channels without remodeling the cortical ER. Journal of Cell Science, 2015, 128, 1568-79.	2.0	44
53	SERCA and PMCA pumps contribute to the deregulation of Ca2+ homeostasis in human CF epithelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 892-903.	4.1	21
54	A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells. European Journal of Pharmacology, 2015, 765, 337-345.	3.5	12

#	Article	IF	CITATIONS
55	Potassium channels in pulmonary arterial hypertension. European Respiratory Journal, 2015, 46, 1167-1177.	6.7	64
56	miR-223 reverses experimental pulmonary arterial hypertension. American Journal of Physiology - Cell Physiology, 2015, 309, C363-C372.	4.6	103
57	Inositol 1,4,5 trisphosphate receptor 1 is a key player of human myoblast differentiation. Cell Calcium, 2014, 56, 513-521.	2.4	28
58	KCNK3: new gene target for pulmonary hypertension?. Expert Review of Respiratory Medicine, 2014, 8, 385-387.	2.5	20
59	Evidence for the Involvement of Type I Interferon in Pulmonary Arterial Hypertension. Circulation Research, 2014, 114, 677-688.	4.5	124
60	Roscovitine is a proteostasis regulator that corrects the trafficking defect of <scp>F</scp> 508delâ€ <scp>CFTR</scp> by a <scp>CDK</scp> â€independent mechanism. British Journal of Pharmacology, 2014, 171, 4831-4849.	5.4	26
61	During post-natal human myogenesis, normal myotube size requires TRPC1 and TRPC4 mediated Ca2+ entry. Journal of Cell Science, 2013, 126, 2525-33.	2.0	44
62	Activation of Transient Receptor Potential Canonical 3 (TRPC3)-mediated Ca2+ Entry by A1 Adenosine Receptor in Cardiomyocytes Disturbs Atrioventricular Conduction. Journal of Biological Chemistry, 2012, 287, 26688-26701.	3.4	28
63	Transient Receptor Potential Canonical Channels Are Required for in Vitro Endothelial Tube Formation. Journal of Biological Chemistry, 2012, 287, 5917-5927.	3.4	85
64	Transient Receptor Potential Canonical Channel 6 Links Ca ²⁺ Mishandling to Cystic Fibrosis Transmembrane Conductance Regulator Channel Dysfunction in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 83-90.	2.9	55
65	CFTR and Ca2+ signaling in cystic fibrosis. Frontiers in Pharmacology, 2011, 2, 67.	3.5	41
66	Thapsigargin activates Ca2+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium, 2011, 49, 115-127.	2.4	60
67	Electrophysiological characterization of store-operated and agonist-induced Ca2+ entry pathways in endothelial cells. Pflugers Archiv European Journal of Physiology, 2010, 460, 109-120.	2.8	16
68	Ca2+ signaling in mouse cardiomyocytes with ablated S100A1 protein. General Physiology and Biophysics, 2009, 28, 371-383.	0.9	13
69	A Cystic Fibrosis Respiratory Epithelial Cell Chronically Treated by Miglustat Acquires a Non–Cystic Fibrosis–Like Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 217-225.	2.9	54
70	Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells. Mitochondrion, 2009, 9, 232-241.	3.4	50
71	Transient receptor potential vanilloid 1 (TRPV1) channels in cultured rat Sertoli cells regulate an acid sensing chloride channel. Biochemical Pharmacology, 2008, 75, 476-483.	4.4	23
72	Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR. Cell Calcium, 2008, 43, 175-183.	2.4	65

#	Article	IF	CITATIONS
73	Guanabenz, an α2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells. European Journal of Pharmacology, 2008, 592, 33-40.	3.5	15
74	Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells. Respiratory Research, 2008, 9, 70.	3.6	32
75	Hint2 Is Expressed in the Mitochondria of H295R Cells and Is Involved in Steroidogenesis. Endocrinology, 2008, 149, 5461-5469.	2.8	16
76	Maintaining Low Ca2+ Level in the Endoplasmic Reticulum Restores Abnormal Endogenous F508del-CFTR Trafficking in Airway Epithelial Cells. Traffic, 2006, 7, 562-573.	2.7	63