
Zhi-Kuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6948149/publications.pdf Version: 2024-02-01

7HI-KUAN CHEN

#	Article	IF	CITATIONS
1	Solution processable low bandgap diketopyrrolopyrrole (DPP) based derivatives: novel acceptors for organic solar cells. Journal of Materials Chemistry, 2010, 20, 3626.	6.7	239
2	PDI Derivative through Fine-Tuning the Molecular Structure for Fullerene-Free Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 29924-29931.	8.0	154
3	A Versatile Low Bandgap Polymer for Airâ€Stable, Highâ€Mobility Fieldâ€Effect Transistors and Efficient Polymer Solar Cells. Advanced Materials, 2011, 23, 1409-1413.	21.0	144
4	Recent progress on non-fullerene acceptors for organic photovoltaics. Materials Today, 2019, 24, 94-118.	14.2	113
5	Fluoreneâ€Based Oligomers for Highly Efficient and Stable Organic Blueâ€Lightâ€Emitting Diodes. Advanced Materials, 2009, 21, 2425-2429.	21.0	106
6	N-Type Conjugated Materials Based on 2-Vinyl-4,5-dicyanoimidazoles and Their Use in Solar Cells. Chemistry of Materials, 2007, 19, 1892-1894.	6.7	93
7	Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions. ACS Applied Materials & Interfaces, 2018, 10, 23928-23937.	8.0	84
8	Dopant-free hole transport materials based on alkyl-substituted indacenodithiophene for planar perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 4706-4713.	5.5	52
9	High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Organic Electronics, 2014, 15, 893-903.	2.6	51
10	Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. Solar Energy Materials and Solar Cells, 2014, 121, 119-125.	6.2	49
11	Design and modification of three-component randomly incorporated copolymers for high performance organic photovoltaic applications. Polymer Chemistry, 2013, 4, 804-811.	3.9	48
12	Dopantâ€Free Holeâ€Transport Materials Based on Methoxytriphenylamineâ€Substituted Indacenodithienothiophene for Solutionâ€Processed Perovskite Solar Cells. ChemSusChem, 2017, 10, 2833-2838.	6.8	43
13	Quinoxaline-Based Wide Band Gap Polymers for Efficient Nonfullerene Organic Solar Cells with Large Open-Circuit Voltages. ACS Applied Materials & Interfaces, 2018, 10, 23235-23246.	8.0	39
14	Dialkyl-Substituted Dithienothiophene Copolymers as Polymer Semiconductors for Thin-Film Transistors and Bulk Heterojunction Solar Cells. Macromolecules, 2011, 44, 690-693.	4.8	36
15	A random copolymer approach to develop nonfullerene acceptors for all-polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 2106-2110.	5.5	35
16	Highâ€Performance Organic Solar Cells Based on a Nonâ€Fullerene Acceptor with a Spiro Core. Chemistry - an Asian Journal, 2017, 12, 721-725.	3.3	33
17	Design of three-component randomly incorporated copolymers as non-fullerene acceptors for all-polymer solar cells. Polymer Chemistry, 2016, 7, 2230-2238.	3.9	32
18	Probing Triplet Excited States and Managing Blue Light Emission of Neutral Tetradentate Platinum(II) Complexes. Journal of Physical Chemistry Letters, 2018, 9, 2285-2292.	4.6	31

ZHI-KUAN CHEN

#	Article	IF	CITATIONS
19	Triplet Excited-State Engineering of Phosphorescent Pt(II) Complexes. Journal of Physical Chemistry Letters, 2019, 10, 5105-5110.	4.6	27
20	Effects of Damkhöler number of evaporation on the morphology of active layer and the performance of organic heterojunction solar cells fabricated by electrospray method. Solar Energy Materials and Solar Cells, 2015, 134, 140-147.	6.2	25
21	Highly Efficient Deep-Blue Electroluminescence from a Aâ^'Ĩ€â€"Dâ^'Ĩ€â€"A Structure Based Fluoresence Material with Exciton Utilizing Efficiency above 25%. ACS Applied Energy Materials, 2018, 1, 3243-3254.	5.1	23
22	Facile synthesis of a dopant-free hole transporting material with a phenothiazine core for planar perovskite solar cells. RSC Advances, 2017, 7, 53604-53610.	3.6	21
23	Effect of fluorination on n-type conjugated polymers for all-polymer solar cells. RSC Advances, 2017, 7, 17076-17084.	3.6	20
24	Three dimensional multi-arm acceptors based on diketopyrrolopyrrole with (hetero)aromatic cores for non-fullerene organic solar cells without additional treatment. Dyes and Pigments, 2017, 139, 412-419.	3.7	19
25	Naphthalene tetracarboxylic diimide (NDI)-based polymer solar cells processed by non-halogenated solvents. Organic Electronics, 2017, 46, 203-210.	2.6	18
26	Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition. Organic Electronics, 2018, 57, 60-67.	2.6	16
27	Phenylquinoline fused cyclic derivatives as electron acceptors of exciplex forming hosts for solution-processable red phosphorescent OLEDs. Journal of Materials Chemistry C, 2018, 6, 8035-8041.	5.5	15
28	Impact of Fluorine Atoms on Perylene Diimide Derivative for Fullereneâ€Free Organic Photovoltaics. Chemistry - an Asian Journal, 2017, 12, 2052-2056.	3.3	11
29	Side chain engineering of naphthalene diimide–bithiopheneâ€based polymer acceptors in allâ€polymer solar cells. Journal of Polymer Science Part A, 2017, 55, 3679-3689.	2.3	10
30	Diketopyrrolopyrrole-based acceptors with multi-arms for organic solar cells. RSC Advances, 2018, 8, 25031-25039.	3.6	8
31	Nonplanar Perylene Diimide-Based Small Molecule and Its Polymer as Electron Acceptors. ACS Applied Polymer Materials, 2020, 2, 2749-2755.	4.4	8
32	PDI-based heteroacenes as acceptors for fullerene-free solar cells: importance of their twisted geometry. New Journal of Chemistry, 2020, 44, 13093-13099.	2.8	6
33	A novel design strategy for deeper blue and more stable thermally activated delayed fluorescent emitters. Organic Electronics, 2020, 78, 105610.	2.6	4
34	Fused perylene diimide-based polymeric acceptors with different π-conjugation and molecular conformation in all polymer solar cells. Dyes and Pigments, 2022, 204, 110462.	3.7	4
35	Improved Performance of Thick Films Based Binary and Ternary Bulk Heterojunction Organic Photovoltaic Devices Incorporated with Electrospinning Processed Nanofibers. Advanced Materials Interfaces, 2018, 5, 1800914.	3.7	3
36	All-polymer solar cells performance enhanced via side-chain engineering of the polymer acceptor. Journal of Materials Science: Materials in Electronics, 2017, 28, 5407-5414.	2.2	1

#	Article	IF	CITATIONS
37	An Asymmetric Molecular Design Strategy for Organic Field-Effect Transistors with High Consistency of Performance. ACS Applied Electronic Materials, 2019, 1, 1233-1242.	4.3	1