Gareth A Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6947659/publications.pdf

Version: 2024-02-01

623734 713466 24 729 14 21 citations g-index h-index papers 26 26 26 801 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mission Architecture Using the SpaceX Starship Vehicle to Enable a Sustained Human Presence on Mars. New Space, 2022, 10, 259-273.	0.8	14
2	New Insights Into Subsurface Stratigraphy Northwest of Ascraeus Mons, Mars, Using the SHARAD and MARSIS Radar Sounders. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	8
3	Dielectric Properties of the Medusae Fossae Formation and Implications for Ice Content. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006601.	3.6	15
4	Availability of subsurface water-ice resources in the northern mid-latitudes of Mars. Nature Astronomy, 2021, 5, 230-236.	10.1	53
5	White Paper Summary of the Final Report from the Ice and Climate Evolution Science Analysis group (ICE-SAG). , 2021, 53, .		O
6	Developing Active Source Seismology for Planetary Science. , 2021, 53, .		1
7	Mid-Latitude Ice on Mars: A Science Target for Planetary Climate Histories and an Exploration Target for In Situ Resources. , 2021, 53, .		2
8	Widespread Exposures of Extensive Clean Shallow Ice in the Midlatitudes of Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006617.	3.6	29
9	The Mars Orbiter for Resources, Ices, and Environments (MORIE) Science Goals and Instrument Trades in Radar, Imaging, and Spectroscopy. Planetary Science Journal, 2021, 2, 76.	3.6	2
10	Calibration of Mars Reconnaissance Orbiter Shallow Radar (SHARAD) data for subsurface probing and surface reflectivity studies. Icarus, 2021, 360, 114358.	2.5	18
11	Fineâ€Scale Layering of Mars Polar Deposits and Signatures of Ice Content in Nonpolar Material From Multiband SHARAD Data Processing. Geophysical Research Letters, 2018, 45, 1759-1766.	4.0	39
12	Evidence for impact melt sheets in lunar highland smooth plains and implications for polar landing sites. Icarus, 2018, 314, 294-298.	2.5	3
13	Selection of the InSight Landing Site. Space Science Reviews, 2017, 211, 5-95.	8.1	150
14	Radar sounder evidence of thick, porous sediments in Meridiani Planum and implications for iceâ€filled deposits on Mars. Geophysical Research Letters, 2017, 44, 9208-9215.	4.0	12
15	Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity. Journal of Geophysical Research E: Planets, 2017, 122, 1580-1596.	3.6	28
16	A subsurface depocenter in the South Polar Layered Deposits of Mars. Geophysical Research Letters, 2017, 44, 8188-8195.	4.0	14
17	Evidence for the episodic erosion of the Medusae Fossae Formation preserved within the youngest volcanic province on Mars. Geophysical Research Letters, 2015, 42, 7336-7342.	4.0	34
18	Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images. Icarus, 2015, 250, 123-130.	2.5	21

#	Article	IF	CITATION
19	Improved discrimination of volcanic complexes, tectonic features, and regolith properties in Mare Serenitatis from Earth-based radar mapping. Journal of Geophysical Research E: Planets, 2014, 119, 313-330.	3.6	38
20	Roughness and nearâ€surface density of Mars from SHARAD radar echoes. Journal of Geophysical Research E: Planets, 2013, 118, 436-450.	3.6	49
21	Preservation of Late Amazonian Mars ice and water-related deposits in a unique crater environment in Noachis Terra: Age relationships between lobate debris tongues and gullies. Icarus, 2011, 211, 347-365.	2.5	21
22	Gully formation on Mars: Two recent phases of formation suggested by links between morphology, slope orientation and insolation history. Icarus, 2010, 208, 658-666.	2.5	43
23	Sinton crater, Mars: Evidence for impact into a plateau icefield and melting to produce valley networks at the Hesperian–Amazonian boundary. Icarus, 2009, 202, 39-59.	2.5	43
24	Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events. Icarus, 2009, 202, 22-38.	2.5	92