Amy E Pasquinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6946327/publications.pdf

Version: 2024-02-01

62 papers 18,476 citations

147801 31 h-index 60 g-index

103 all docs

103
docs citations

103 times ranked 17249 citing authors

#	Article	IF	CITATIONS
1	The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403, 901-906.	27.8	4,315
2	A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the <i>let-7</i> Small Temporal RNA. Science, 2001, 293, 834-838.	12.6	2,450
3	Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408, 86-89.	27.8	2,167
4	Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell, 2001, 106, 23-34.	28.9	1,731
5	MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Reviews Genetics, 2012, 13, 271-282.	16.3	1,406
6	Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation. Cell, 2005, 122, 553-563.	28.9	1,219
7	MicroRNA silencing through RISC recruitment of elF6. Nature, 2007, 447, 823-828.	27.8	433
8	MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nature Genetics, 2004, 36, 1079-1083.	21.4	411
9	Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Molecular Cell, 2016, 64, 320-333.	9.7	344
10	The C. elegans hunchback Homolog, hbl-1, Controls Temporal Patterning and Is a Probable MicroRNA Target. Developmental Cell, 2003, 4, 639-650.	7.0	326
11	Control of Developmental Timing by MicroRNAs and Their Targets. Annual Review of Cell and Developmental Biology, 2002, 18, 495-513.	9.4	304
12	MicroRNAs: a developing story. Current Opinion in Genetics and Development, 2005, 15, 200-205.	3.3	296
13	Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nature Structural and Molecular Biology, 2010, 17, 173-179.	8.2	279
14	Functional Genomic Analysis of RNA Interference in C. elegans. Science, 2005, 308, 1164-1167.	12.6	266
15	MicroRNA biogenesis: regulating the regulators. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 51-68.	5.2	261
16	MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nature Structural and Molecular Biology, 2010, 17, 5-10.	8.2	233
17	Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature, 2012, 486, 541-544.	27.8	203
18	Short poly(A) tails are a conserved feature of highly expressed genes. Nature Structural and Molecular Biology, 2017, 24, 1057-1063.	8.2	200

#	Article	IF	CITATIONS
19	miRNA Targeting: Growing beyond the Seed. Trends in Genetics, 2019, 35, 215-222.	6.7	179
20	Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. Rna, 2004, 10, 1586-1594.	3.5	145
21	Tales of Detailed Poly(A) Tails. Trends in Cell Biology, 2019, 29, 191-200.	7.9	138
22	Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution?. Evolution & Development, 2003, 5, 372-378.	2.0	130
23	LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans. Nature Structural and Molecular Biology, 2011, 18, 302-308.	8.2	129
24	Small non-coding RNAs mount a silent revolution in gene expression. Current Opinion in Cell Biology, 2012, 24, 333-340.	5.4	113
25	Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Developmental Biology, 2003, 259, 1-8.	2.0	110
26	MicroRNAs: deviants no longer. Trends in Genetics, 2002, 18, 171-173.	6.7	76
27	Analysis of microRNA Expression and Function. Methods in Cell Biology, 2011, 106, 219-252.	1.1	66
28	Let's Make It Happen. Current Topics in Developmental Biology, 2012, 99, 1-30.	2.2	53
29	Functional Genomic Analysis of the let-7 Regulatory Network in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003353.	3.5	43
30	Opposing roles of microRNA Argonautes during Caenorhabditis elegans aging. PLoS Genetics, 2018, 14, e1007379.	3.5	42
31	The evolving role of microRNAs in animal gene expression. BioEssays, 2006, 28, 449-452.	2.5	38
32	The miR-35-41 Family of MicroRNAs Regulates RNAi Sensitivity in Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002536.	3.5	37
33	Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP. Methods, 2013, 63, 119-125.	3.8	32
34	Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans. Developmental Biology, 2010, 348, 210-221.	2.0	24
35	The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans. Developmental Biology, 2014, 390, 126-135.	2.0	24
36	Remodeling of the Caenorhabditis elegans non-coding RNA transcriptome by heat shock. Nucleic Acids Research, 2019, 47, 9829-9841.	14.5	22

#	Article	IF	CITATIONS
37	Uncoupling of <i>lin-14</i> mRNA and protein repression by nutrient deprivation in <i>Caenorhabditis elegans</i> Rna, 2009, 15, 400-405.	3.5	21
38	Multiple cis-elements and trans-acting factors regulate dynamic spatio-temporal transcription of let-7 in Caenorhabditis elegans. Developmental Biology, 2013, 374, 223-233.	2.0	21
39	Diversification of the Caenorhabditis heat shock response by Helitron transposable elements. ELife, 2019, 8, .	6.0	21
40	A tale of two sequences: microRNA-target chimeric reads. Genetics Selection Evolution, 2016, 48, 31.	3.0	19
41	RNA interference may result in unexpected phenotypes in Caenorhabditis elegans. Nucleic Acids Research, 2019, 47, 3957-3969.	14.5	19
42	Period homolog LIN-42 regulates miRNA transcription to impact developmental timing. Worm, 2014, 3, e974453.	1.0	15
43	Recovery from heat shock requires the microRNA pathway in Caenorhabditis elegans. PLoS Genetics, 2021, 17, e1009734.	3.5	15
44	Paring MiRNAs Through Pairing. Science, 2010, 328, 1494-1495.	12.6	13
45	MicroRNAs: heralds of the noncoding RNA revolution. Rna, 2015, 21, 709-710.	3.5	11
46	Auxin-independent depletion of degron-tagged proteins by TIR1. MicroPublication Biology, 2020, 2020, .	0.1	11
47	Nuclear and cytoplasmic poly(A) binding proteins (PABPs) favor distinct transcripts and isoforms. Nucleic Acids Research, 2022, 50, 4685-4702.	14.5	9
48	The primary target of let-7 microRNA. Biochemical Society Transactions, 2013, 41, 821-824.	3.4	8
49	Identification of miRNAs and Their Targets in C. elegans. Advances in Experimental Medicine and Biology, 2014, 825, 431-450.	1.6	8
50	Comprehensive Identification of miRNA Target Sites in Live Animals. Methods in Molecular Biology, 2011, 732, 169-185.	0.9	7
51	Splicing remodels the let-7 primary microRNA to facilitate Drosha processing in Caenorhabditis elegans. Rna, 2015, 21, 1396-1403.	3.5	4
52	A team effort blocks the ribosome in its tracks. Nature Structural and Molecular Biology, 2012, 19, 133-134.	8.2	3
53	MicroRNAs that interfere with RNAi. Worm, 2013, 2, e21835.	1.0	3
54	A rADAR defense against RNAi. Genes and Development, 2018, 32, 199-201.	5.9	3

AmyÂE Pasquinelli

#	Article	IF	CITATIONS
55	Detection of microRNA-Target Interactions by Chimera PCR (ChimP). Methods in Molecular Biology, 2018, 1823, 153-165.	0.9	3
56	Birthing histone mRNAs by CSR-1 section. EMBO Journal, 2012, 31, 3790-3791.	7.8	1
57	A sense-able microRNA. Genes and Development, 2016, 30, 2019-2020.	5.9	1
58	New Roles for MicroRNAs in Old Worms. Frontiers in Aging, 2022, 3, .	2.6	1
59	MicroRNAs: A small contribution from worms. , 2005, , 69-83.		0
60	A genome wide view of hunchback-like-1 targets. Cell Cycle, 2010, 9, 227-232.	2.6	0
61	Making and Maintaining microRNAs in Animals. , 2017, , 1-17.		0
62	<i>Caenorhabditis elegans</i> transposable elements harbor diverse transcription factor DNA-binding sites. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	0