Carl-Henrik Heldin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6945331/publications.pdf

Version: 2024-02-01

204 papers 36,087 citations

79 h-index 187 g-index

207 all docs

207 docs citations

times ranked

207

32296 citing authors

#	Article	lF	Citations
1	PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating gliomaâ€initiating cell properties via DNA methyltransferase 3A. Molecular Oncology, 2022, 16, 269-288.	2.1	5
2	The protein kinase LKB1 promotes selfâ€renewal and blocks invasiveness in glioblastoma. Journal of Cellular Physiology, 2022, 237, 743-762.	2.0	8
3	Deubiquitinating enzymes USP4 and USP17 finetune the trafficking of PDGFRβ and affect PDGF-BB-induced STAT3 signalling. Cellular and Molecular Life Sciences, 2022, 79, 85.	2.4	2
4	TGFβ selects for proâ€stemness over proâ€invasive phenotypes during cancer cell epithelial–mesenchymal transition. Molecular Oncology, 2022, 16, 2330-2354.	2.1	5
5	Extracellular Vesicles and Transforming Growth Factor \hat{l}^2 Signaling in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 849938.	1.8	14
6	The ubiquitin-ligase TRAF6 and TGFÎ ² type I receptor form a complex with Aurora kinase B contributing to mitotic progression and cytokinesis in cancer cells. EBioMedicine, 2022, 82, 104155.	2.7	5
7	TRAF4/6 Is Needed for CD44 Cleavage and Migration via RAC1 Activation. Cancers, 2021, 13, 1021.	1.7	7
8	The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor \hat{l}^2 signaling. Oncogene, 2021, 40, 3748-3765.	2.6	18
9	Tumor Promoting Effect of BMP Signaling in Endometrial Cancer. International Journal of Molecular Sciences, 2021, 22, 7882.	1.8	14
10	BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells. Cellular Signalling, 2021, 87, 110146.	1.7	11
11	The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma. Cell Death and Disease, 2021, 12, 932.	2.7	5
12	Involvement of hyaluronan and CD44 in cancer and viral infections. Cellular Signalling, 2020, 65, 109427.	1.7	44
13	Structure-based discovery of novel small molecule inhibitors of platelet-derived growth factor-B. Bioorganic Chemistry, 2020, 94, 103374.	2.0	5
14	Specific targeting of PDGFR $\hat{1}^2$ in the stroma inhibits growth and angiogenesis in tumors with high PDGF-BB expression. Theranostics, 2020, 10, 1122-1135.	4.6	35
15	BMP signaling is a therapeutic target in ovarian cancer. Cell Death Discovery, 2020, 6, 139.	2.0	22
16	Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors. Bone, 2020, 138, 115472.	1.4	65
17	Platelet-Specific PDGFB Ablation Impairs Tumor Vessel Integrity and Promotes Metastasis. Cancer Research, 2020, 80, 3345-3358.	0.4	47
18	$TGF\hat{I}^2$ and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene, 2020, 39, 4436-4449.	2.6	52

#	Article	IF	Citations
19	Smad7 Enhances TGF-Î ² -Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells. IScience, 2020, 23, 101470.	1.9	22
20	Dual specificity phosphatase (DUSP)-4 is induced by platelet-derived growth factor -BB in an Erk1/2-, STAT3- and p53-dependent manner. Biochemical and Biophysical Research Communications, 2019, 519, 469-474.	1.0	3
21	High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMedicine, 2019, 48, 425-441.	2.7	29
22	The TGFB2-AS1 lncRNA Regulates TGF- \hat{l}^2 Signaling by Modulating Corepressor Activity. Cell Reports, 2019, 28, 3182-3198.e11.	2.9	26
23	LXRÎ \pm limits TGFÎ 2 -dependent hepatocellular carcinoma associated fibroblast differentiation. Oncogenesis, 2019, 8, 36.	2.1	33
24	The ALK-1/SMAD/ATOH8 axis attenuates hypoxic responses and protects against the development of pulmonary arterial hypertension. Science Signaling, 2019, 12, .	1.6	24
25	JNK-Dependent cJun Phosphorylation Mitigates TGF \hat{l}^2 - and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses. Cells, 2019, 8, 1481.	1.8	11
26	Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGF \hat{I}^2 -induced EMT in breast cancer. Matrix Biology, 2019, 80, 29-45.	1.5	43
27	Transforming growth factor \hat{l}^2 (TGF \hat{l}^2) induces NUAK kinase expression to fine-tune its signaling output. Journal of Biological Chemistry, 2019, 294, 4119-4136.	1.6	20
28	Snail mediates crosstalk between TGF \hat{l}^2 and LXR $\hat{l}\pm$ in hepatocellular carcinoma. Cell Death and Differentiation, 2018, 25, 885-903.	5.0	34
29	Snail regulates BMP and TGF \hat{I}^2 pathways to control the differentiation status of glioma-initiating cells. Oncogene, 2018, 37, 2515-2531.	2.6	46
30	JUNB governs a feed-forward network of $TGF\hat{l}^2$ signaling that aggravates breast cancer invasion. Nucleic Acids Research, 2018, 46, 1180-1195.	6.5	77
31	Intracellular trafficking of transforming growth factor & Diophysica Sinica, 2018, 50, 3-11.	0.9	41
32	PDGFRβ translocates to the nucleus and regulates chromatin remodeling via TATA element–modifying factor 1. Journal of Cell Biology, 2018, 217, 1701-1717.	2.3	23
33	Genome–wide binding of transcription factor ZEB1 in tripleâ€negative breast cancer cells. Journal of Cellular Physiology, 2018, 233, 7113-7127.	2.0	32
34	Genomewide binding of transcription factor Snail1 in tripleâ€negative breast cancer cells. Molecular Oncology, 2018, 12, 1153-1174.	2.1	22
35	Targeting PDGFâ€mediated recruitment of pericytes blocks vascular mimicry and tumor growth. Journal of Pathology, 2018, 246, 447-458.	2.1	67
36	The protein kinase SIK downregulates the polarity protein Par3. Oncotarget, 2018, 9, 5716-5735.	0.8	11

#	Article	IF	Citations
37	Imatinib increases oxygen delivery in extracellular matrix-rich but not in matrix-poor experimental carcinoma. Journal of Translational Medicine, 2017, 15, 47.	1.8	10
38	The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB. Science Signaling, 2017, 10, .	1.6	58
39	PDGF., 2017,, 603-610.		0
40	TGF- \hat{l}^2 promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85 \hat{l} ±. Science Signaling, 2017, 10, .	1.6	157
41	Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGFl ² stimulation in cancer. Oncotarget, 2017, 8, 97703-97726.	0.8	18
42	Mechanisms of TGFβ-Induced Epithelial–Mesenchymal Transition. Journal of Clinical Medicine, 2016, 5, 63.	1.0	194
43	Commercially Available Preparations of Recombinant Wnt3a Contain Nonâ€Wnt Related Activities Which May Activate TGFâ€Î² Signaling. Journal of Cellular Biochemistry, 2016, 117, 938-945.	1.2	8
44	Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation. Scientific Reports, 2016, 6, 29868.	1.6	9
45	The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor \hat{I}^2 (PDGFR \hat{I}^2) Internalization and Signaling. Journal of Biological Chemistry, 2016, 291, 11608-11618.	1.6	30
46	Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation. Journal of Biological Chemistry, 2016, 291, 12706-12723.	1.6	6
47	Signaling Receptors for TGF-β Family Members. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022053.	2.3	480
48	Ras and TGF- \hat{l}^2 signaling enhance cancer progression by promoting the \hat{l} Np63 transcriptional program. Science Signaling, 2016, 9, ra84.	1.6	33
49	Platelet-derived growth factor (PDGF)-induced activation of Erk5 MAP-kinase is dependent on Mekk2, Mek1/2, PKC and Pl3-kinase, and affects BMP signaling. Cellular Signalling, 2016, 28, 1422-1431.	1.7	9
50	BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Kr $\tilde{A}\frac{1}{4}$ ppel-like Factors. Stem Cell Reports, 2016, 6, 64-73.	2.3	61
51	APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain. Oncotarget, 2016, 7, 279-292.	0.8	28
52	The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling. Oncotarget, 2016, 7, 1120-1143.	0.8	17
53	Platelet-Derived Growth Factor. , 2016, , 3603-3606.		0
54	TRAF6 promotes $TGF\hat{l}^2$ -induced invasion and cell-cycle regulation via Lys63-linked polyubiquitination of Lys178 in $TGF\hat{l}^2$ type I receptor. Cell Cycle, 2015, 14, 554-565.	1.3	44

#	Article	IF	Citations
55	CIN85 modulates $TGF\hat{l}^2$ signaling by promoting the presentation of $TGF\hat{l}^2$ receptors on the cell surface. Journal of Cell Biology, 2015, 210, 319-332.	2.3	25
56	The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition. Nucleic Acids Research, 2015, 43, 162-178.	6.5	69
57	The PDGFR Receptor Family. , 2015, , 373-538.		2
58	Histidine-domain-containing protein tyrosine phosphatase regulates platelet-derived growth factor receptor intracellular sorting and degradation. Cellular Signalling, 2015, 27, 2209-2219.	1.7	23
59	Functional Characterization of Germline Mutations in PDGFB and PDGFRB in Primary Familial Brain Calcification. PLoS ONE, 2015, 10, e0143407.	1.1	77
60	Platelet-Derived Growth Factor., 2015, , 1-4.		0
61	NR4A1 Promotes PDGF-BB-Induced Cell Colony Formation in Soft Agar. PLoS ONE, 2014, 9, e109047.	1.1	14
62	$TGF\hat{I}^2$ -induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell Cycle, 2014, 13, 2400-2414.	1.3	59
63	TRAF6 Stimulates the Tumor-Promoting Effects of TGFβ Type I Receptor Through Polyubiquitination and Activation of Presenilin 1. Science Signaling, 2014, 7, ra2.	1.6	60
64	Tony Pawson (1952–2013). Growth Factors, 2014, 32, 174-175.	0.5	0
65	Targeting the PDGF Signaling Pathway in the Treatment of Non-Malignant Diseases. Journal of Neurolmmune Pharmacology, 2014, 9, 69-79.	2.1	45
66	Platelet-derived Growth Factor \hat{l}^2 -Receptor, Transforming Growth Factor \hat{l}^2 Type I Receptor, and CD44 Protein Modulate Each Other's Signaling and Stability. Journal of Biological Chemistry, 2014, 289, 19747-19757.	1.6	60
67	PDGF., 2014, , 1-8.		0
68	Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase $C-\hat{l}^31$, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D. Cell Communication and Signaling, 2013, 11, 3.	2.7	31
69	Structural and Functional Properties of Platelet-Derived Growth Factor and Stem Cell Factor Receptors. Cold Spring Harbor Perspectives in Biology, 2013, 5, a009100-a009100.	2.3	111
70	Targeting the PDGF signaling pathway in tumor treatment. Cell Communication and Signaling, 2013, 11, 97.	2.7	410
71	The Fer Tyrosine Kinase Is Important for Platelet-derived Growth Factor-BB-induced Signal Transducer and Activator of Transcription 3 (STAT3) Protein Phosphorylation, Colony Formation in Soft Agar, and Tumor Growth in Vivo. Journal of Biological Chemistry, 2013, 288, 15736-15744.	1.6	29
72	p53 regulates epithelial–mesenchymal transition induced by transforming growth factor β. Journal of Cellular Physiology, 2013, 228, 801-813.	2.0	37

#	Article	IF	Citations
73	Dynamin Inhibitors Impair Endocytosis and Mitogenic Signaling of <scp>PDGF</scp> . Traffic, 2013, 14, 725-736.	1.3	36
74	Transforming Growth Factor-Î ² Signaling. , 2013, , 3-32.		1
75	APC and Smad7 link TGF \hat{l}^2 type I receptors to the microtubule system to promote cell migration. Molecular Biology of the Cell, 2012, 23, 2109-2121.	0.9	32
76	Autocrine PDGF stimulation in malignancies. Upsala Journal of Medical Sciences, 2012, 117, 83-91.	0.4	62
77	Regulation of Transcription Factor Twist Expression by the DNA Architectural Protein High Mobility Group A2 during Epithelial-to-Mesenchymal Transition. Journal of Biological Chemistry, 2012, 287, 7134-7145.	1.6	94
78	Polyubiquitination of Transforming Growth Factor \hat{l}^2 (TGF \hat{l}^2)-associated Kinase 1 Mediates Nuclear Factor- \hat{l}^2 B Activation in Response to Different Inflammatory Stimuli. Journal of Biological Chemistry, 2012, 287, 123-133.	1.6	54
79	Induction of epithelial–mesenchymal transition by transforming growth factor β. Seminars in Cancer Biology, 2012, 22, 446-454.	4.3	123
80	MKP3 negatively modulates PDGF-induced Akt and Erk5 phosphorylation as well as chemotaxis. Cellular Signalling, 2012, 24, 635-640.	1.7	9
81	Regulation of EMT by TGF \hat{I}^2 in cancer. FEBS Letters, 2012, 586, 1959-1970.	1.3	435
82	Role of Smads in TGF \hat{I}^2 signaling. Cell and Tissue Research, 2012, 347, 21-36.	1.5	291
83	Platelet-Derived Growth Factor. , 2011, , 2908-2910.		0
84	Platelet-derived growth factor-induced signaling pathways interconnect to regulate the temporal pattern of Erk1/2 phosphorylation. Cellular Signalling, 2011, 23, 280-287.	1.7	14
85	Negative Regulation of $TGF\hat{l}^2$ Signaling by the Kinase LKB1 and the Scaffolding Protein LIP1. Journal of Biological Chemistry, 2011, 286, 341-353.	1.6	50
86	A decisive function of transforming growth factor- \hat{l}^2/S mad signaling in tissue morphogenesis and differentiation of human HaCaT keratinocytes. Molecular Biology of the Cell, 2011, 22, 782-794.	0.9	49
87	TRAF6 ubiquitinates $TGF\hat{l}^2$ type I receptor to promote its cleavage and nuclear translocation in cancer. Nature Communications, 2011, 2, 330.	5.8	157
88	ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Research, 2011, 39, 8712-8727.	6.5	186
89	Role of PDGF PDGF in Tumor-Stroma Interactions. , 2011, , 257-265.		0
90	PARP-1 Attenuates Smad-Mediated Transcription. Molecular Cell, 2010, 40, 521-532.	4.5	119

#	Article	IF	Citations
91	Combined Anti-Angiogenic Therapy Targeting PDGF and VEGF Receptors Lowers the Interstitial Fluid Pressure in a Murine Experimental Carcinoma. PLoS ONE, 2009, 4, e8149.	1.1	38
92	Negative and Positive Regulation of MAPK Phosphatase 3 Controls Platelet-derived Growth Factor-induced Erk Activation. Journal of Biological Chemistry, 2009, 284, 4626-4634.	1.6	66
93	Activation of Protein Kinase C \hat{l}_{\pm} Is Necessary for Sorting the PDGF \hat{l}^2 -Receptor to Rab4a-dependent Recycling. Molecular Biology of the Cell, 2009, 20, 2856-2863.	0.9	48
94	TGF- \hat{i}^2 uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells. Future Oncology, 2009, 5, 1-3.	1.1	30
95	Emergence, development and diversification of the TGF- \hat{l}^2 signalling pathway within the animal kingdom. BMC Evolutionary Biology, 2009, 9, 28.	3.2	137
96	Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Current Opinion in Cell Biology, 2009, 21, 166-176.	2.6	587
97	Prognostic Significance of Stromal Platelet-Derived Growth Factor β-Receptor Expression in Human Breast Cancer. American Journal of Pathology, 2009, 175, 334-341.	1.9	215
98	The regulation of TGFÎ ² signal transduction. Development (Cambridge), 2009, 136, 3699-3714.	1.2	716
99	A gain-of-function mutation in the PDGFR- \hat{l}^2 alters the kinetics of injury response in liver and skin. Laboratory Investigation, 2008, 88, 1204-1214.	1.7	14
100	The type I TGF- \hat{l}^2 receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology, 2008, 10, 1199-1207.	4.6	482
101	The European Research Council — a new opportunity for European science. Nature Reviews Molecular Cell Biology, 2008, 9, 417-420.	16.1	5
102	Dynamic control of TGFâ€Î² signaling and its links to the cytoskeleton. FEBS Letters, 2008, 582, 2051-2065.	1.3	92
103	TGF \hat{I}^2 induces SIK to negatively regulate type I receptor kinase signaling. Journal of Cell Biology, 2008, 182, 655-662.	2.3	69
104	Nck Adapters Are Involved in the Formation of Dorsal Ruffles, Cell Migration, and Rho Signaling Downstream of the Platelet-derived Growth Factor \hat{I}^2 Receptor. Journal of Biological Chemistry, 2008, 283, 30034-30044.	1.6	36
105	HMGA2 and Smads Co-regulate SNAIL1 Expression during Induction of Epithelial-to-Mesenchymal Transition. Journal of Biological Chemistry, 2008, 283, 33437-33446.	1.6	310
106	Notch signaling is necessary for epithelial growth arrest by TGF-Î ² . Journal of Cell Biology, 2007, 176, 695-707.	2.3	126
107	Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochemical Journal, 2007, 404, 327-336.	1.7	107
108	PDGF Receptors as Targets in Tumor Treatment. Advances in Cancer Research, 2007, 97, 247-274.	1.9	187

#	Article	IF	CITATIONS
109	An activating mutation in the PDGF receptor-beta causes abnormal morphology in the mouse placenta. International Journal of Developmental Biology, 2007, 51, 361-370.	0.3	15
110	Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. International Journal of Cancer, 2007, 121, 2606-2614.	2.3	63
111	Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 2007, 98, 1512-1520.	1.7	722
112	Platelet-derived growth factor receptor \hat{l}^2 , carrying the activating mutation D849N, accelerates the establishment of B16 melanoma. BMC Cancer, 2007, 7, 224.	1.1	17
113	The gene expression profile of PDGF-treated neural stem cells corresponds to partially differentiated neurons and glia. Growth Factors, 2006, 24, 184-196.	0.5	16
114	$TGF\hat{l}^2$ 1-Induced Activation of ATM and p53 Mediates Apoptosis in a Smad7-Dependent Manner. Cell Cycle, 2006, 5, 2787-2795.	1.3	52
115	The DNA Binding Activities of Smad2 and Smad3 Are Regulated by Coactivator-mediated Acetylation. Journal of Biological Chemistry, 2006, 281, 39870-39880.	1.6	105
116	The Mechanism of Nuclear Export of Smad3 Involves Exportin 4 and Ran. Molecular and Cellular Biology, 2006, 26, 1318-1332.	1.1	78
117	Loss of T-Cell Protein Tyrosine Phosphatase Induces Recycling of the Platelet-derived Growth Factor (PDGF) β-Receptor but Not the PDGF α-Receptor. Molecular Biology of the Cell, 2006, 17, 4846-4855.	0.9	48
118	Inhibition of Platelet-derived Growth Factor-BB-induced Receptor Activation and Fibroblast Migration by Hyaluronan Activation of CD44. Journal of Biological Chemistry, 2006, 281, 26512-26519.	1.6	73
119	Alix Facilitates the Interaction between c-Cbl and Platelet-derived Growth Factor β-Receptor and Thereby Modulates Receptor Down-regulation. Journal of Biological Chemistry, 2006, 281, 39152-39158.	1.6	44
120	c-Jun N-terminal Kinase Is Necessary for Platelet-derived Growth Factor-mediated Chemotaxis in Primary Fibroblasts. Journal of Biological Chemistry, 2006, 281, 22173-22179.	1.6	30
121	Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition. Journal of Cell Biology, 2006, 174, 175-183.	2.3	457
122	The Balance between Acetylation and Deacetylation Controls Smad7 Stability. Journal of Biological Chemistry, 2005, 280, 21797-21803.	1.6	140
123	Non-Smad TGF- \hat{l}^2 signals. Journal of Cell Science, 2005, 118, 3573-3584.	1.2	976
124	Interaction between Smad7 and \hat{l}^2 -Catenin: Importance for Transforming Growth Factor \hat{l}^2 -Induced Apoptosis. Molecular and Cellular Biology, 2005, 25, 1475-1488.	1,1	121
125	TGF-Î ² and the Smad Signaling Pathway Support Transcriptomic Reprogramming during Epithelial-Mesenchymal Cell Transition. Molecular Biology of the Cell, 2005, 16, 1987-2002.	0.9	530
126	Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. Journal of Clinical Investigation, 2005, 115, 118-127.	3.9	148

#	Article	IF	Citations
127	Development and possible clinical use of antagonists for PDGF and TGF- \hat{l}^2 . Upsala Journal of Medical Sciences, 2004, 109, 165-178.	0.4	20
128	Autoinhibition of the Platelet-derived Growth Factor \hat{l}^2 -Receptor Tyrosine Kinase by Its C-terminal Tail. Journal of Biological Chemistry, 2004, 279, 19732-19738.	1.6	54
129	Platelet-derived Growth Factor Stimulates Membrane Lipid Synthesis Through Activation of Phosphatidylinositol 3-Kinase and Sterol Regulatory Element-binding Proteins. Journal of Biological Chemistry, 2004, 279, 35392-35402.	1.6	107
130	Id2 and Id3 Define the Potency of Cell Proliferation and Differentiation Responses to Transforming Growth Factor Î ² and Bone Morphogenetic Protein. Molecular and Cellular Biology, 2004, 24, 4241-4254.	1.1	318
131	Site-Selective Regulation of Platelet-Derived Growth Factor β Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase. Molecular and Cellular Biology, 2004, 24, 2190-2201.	1.1	87
132	Gab1 Contributes to Cytoskeletal Reorganization and Chemotaxis in Response to Platelet-derived Growth Factor. Journal of Biological Chemistry, 2004, 279, 17897-17904.	1.6	35
133	A Gain of Function Mutation in the Activation Loop of Plateletderived Growth Factor \hat{I}^2 -Receptor Deregulates Its Kinase Activity. Journal of Biological Chemistry, 2004, 279, 42516-42527.	1.6	23
134	High interstitial fluid pressure â€" an obstacle in cancer therapy. Nature Reviews Cancer, 2004, 4, 806-813.	12.8	1,814
135	Platelet-Derived Growth Factor Production by B16 Melanoma Cells Leads to Increased Pericyte Abundance in Tumors and an Associated Increase in Tumor Growth Rate. Cancer Research, 2004, 64, 2725-2733.	0.4	174
136	Platelet-derived growth factor—an introduction. Cytokine and Growth Factor Reviews, 2004, 15, 195-196.	3.2	28
137	PDGF receptors as cancer drug targets. Cancer Cell, 2003, 3, 439-443.	7.7	449
138	Nuclear Factor YY1 Inhibits Transforming Growth Factor \hat{l}^2 - and Bone Morphogenetic Protein-Induced Cell Differentiation. Molecular and Cellular Biology, 2003, 23, 4494-4510.	1.1	153
139	Transforming Growth Factor-β1 (TGF-β)–induced Apoptosis of Prostate Cancer Cells Involves Smad7-dependent Activation of p38 by TGF-β-activated Kinase 1 and Mitogen-activated Protein Kinase Kinase 3. Molecular Biology of the Cell, 2003, 14, 529-544.	0.9	213
140	Differential Ubiquitination Defines the Functional Status of the Tumor Suppressor Smad4. Journal of Biological Chemistry, 2003, 278, 33571-33582.	1.6	91
141	Ligand-induced recruitment of Na+/H+-exchanger regulatory factor to the PDGF (platelet-derived) Tj ETQq1 1 0.75 2003, 376, 505-510.	84314 rgf 1.7	BT /Overlock 43
142	Platelet-Derived Growth Factor (PDGF)., 2003,, 231-237.		0
143	Protein Tyrosine Kinase Receptor Signaling Overview. , 2003, , 391-396.		1
144	STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clinical Cancer Research, 2003, 9, 3779-87.	3.2	105

#	Article	IF	Citations
145	Transforming Growth Factor-β–induced Mobilization of Actin Cytoskeleton Requires Signaling by Small GTPases Cdc42 and RhoA. Molecular Biology of the Cell, 2002, 13, 902-914.	0.9	382
146	New Members of the Platelet-Derived Growth Factor Family of Mitogens. Archives of Biochemistry and Biophysics, 2002, 398, 284-290.	1.4	190
147	Control of Smad7 Stability by Competition between Acetylation and Ubiquitination. Molecular Cell, 2002, 10, 483-493.	4.5	313
148	Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Research, 2002, 62, 5476-84.	0.4	356
149	Regulation of Smad signaling by protein kinase C. FASEB Journal, 2001, 15, 553-555.	0.2	170
150	Involvement of platelet-derived growth factor in disease: development of specific antagonists. Advances in Cancer Research, 2001, 80, 1-38.	1.9	174
151	Mechanisms of platelet-derived growth factor-induced chemotaxis. International Journal of Cancer, 2001, 91, 757-762.	2.3	140
152	Signal Transduction: Multiple Pathways, Multiple Options for Therapy. Stem Cells, 2001, 19, 295-303.	1.4	35
153	PDGF-D is a specific, protease-activated ligand for the PDGF \hat{l}^2 -receptor. Nature Cell Biology, 2001, 3, 512-516.	4.6	503
154	Transforming Growth Factor- \hat{l}^2 Induces Nuclear Import of Smad3 in an Importin- \hat{l}^2 1 and Ran-dependent Manner. Molecular Biology of the Cell, 2001, 12, 1079-1091.	0.9	163
155	Phosphorylation of Smad7 at Ser-249 Does Not Interfere with Its Inhibitory Role in Transforming Growth Factor-β-dependent Signaling but Affects Smad7-dependent Transcriptional Activation. Journal of Biological Chemistry, 2001, 276, 14344-14349.	1.6	47
156	PDGF-C is a new protease-activated ligand for the PDGF α-receptor. Nature Cell Biology, 2000, 2, 302-309.	4.6	548
157	Signaling inputs converge on nuclear effectors in TGF-Î ² signaling. Trends in Biochemical Sciences, 2000, 25, 64-70.	3.7	340
158	Binding of factor VIIa to tissue factor on human fibroblasts leads to activation of phospholipase C and enhanced PDGF-BB–stimulated chemotaxis. Blood, 2000, 96, 3452-3458.	0.6	78
159	Intimal Hyperplasia Recurs After Removal of PDGF-AB and -BB Inhibition in the Rat Carotid Artery Injury Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, E89-95.	1.1	66
160	Predimerization of Recombinant Platelet-Derived Growth Factor Receptor Extracellular Domains Increases Antagonistic Potencyâ€. Biochemistry, 2000, 39, 2370-2375.	1.2	9
161	Binding of factor VIIa to tissue factor on human fibroblasts leads to activation of phospholipase C and enhanced PDGF-BB–stimulated chemotaxis. Blood, 2000, 96, 3452-3458.	0.6	3
162	Mechanism of Action and In Vivo Role of Platelet-Derived Growth Factor. Physiological Reviews, 1999, 79, 1283-1316.	13.1	2,141

#	Article	IF	CITATIONS
163	Overactivation of Phospholipase $C \cdot \hat{1}^3 1$ Renders Platelet-derived Growth Factor $\hat{1}^2$ -Receptor-expressing Cells Independent of the Phosphatidylinositol 3-Kinase Pathway for Chemotaxis. Journal of Biological Chemistry, 1999, 274, 22089-22094.	1.6	37
164	Increased mitogenicity of an $\hat{1}\pm\hat{1}^2$ heterodimeric PDGF receptor complex correlates with lack of RasGAP binding. Oncogene, 1999, 18, 2481-2488.	2.6	61
165	SHP-2 binds to Tyr763 and Tyr1009 in the PDGF \hat{l}^2 -receptor and mediates PDGF-induced activation of the Ras/MAP kinase pathway and chemotaxis. Oncogene, 1999, 18, 3696-3702.	2.6	66
166	Activation of Stat5 by platelet-derived growth factor (PDGF) is dependent on phosphorylation sites in PDGF \hat{l}^2 -receptor juxtamembrane and kinase insert domains. Oncogene, 1998, 16, 505-515.	2.6	82
167	Identification of Tyr-762 in the platelet-derived growth factor \hat{l} ±-receptor as the binding site for Crk proteins. Oncogene, 1998, 16, 1229-1239.	2.6	51
168	Signal transduction via platelet-derived growth factor receptors. Biochimica Et Biophysica Acta: Reviews on Cancer, 1998, 1378, F79-F113.	3.3	376
169	The L45 loop in type I receptors for TGF- \hat{l}^2 family members is a critical determinant in specifying Smad isoform activation. FEBS Letters, 1998, 434, 83-87.	1.3	352
170	Role of Immunoglobulin-like Domains 2–4 of the Platelet-derived Growth Factor α-Receptor in Ligand-Receptor Complex Assembly. Journal of Biological Chemistry, 1998, 273, 25495-25502.	1.6	17
171	Transforming Growth Factor \hat{I}^21 Induces Nuclear Export of Inhibitory Smad7. Journal of Biological Chemistry, 1998, 273, 29195-29201.	1.6	218
172	Phosphorylation of Ser465 and Ser467 in the C Terminus of Smad2 Mediates Interaction with Smad4 and Is Required for Transforming Growth Factor-Î ² Signaling. Journal of Biological Chemistry, 1997, 272, 28107-28115.	1.6	345
173	Immunoglobulin-like Domain 4-mediated Receptor-Receptor Interactions Contribute to Platelet-derived Growth Factor-induced Receptor Dimerization. Journal of Biological Chemistry, 1997, 272, 12676-12682.	1.6	50
174	Involvement of Phosphatidylinositide 3′-Kinase and Rac in Platelet-Derived Growth Factor-Induced Actin Reorganization and Chemotaxis. Experimental Cell Research, 1997, 234, 434-441.	1.2	110
175	TGF-Î ² signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997, 390, 465-471.	13.7	3,514
176	Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature, 1997, 389, 631-635.	13.7	1,684
177	Inhibitory DNA Ligands to Platelet-Derived Growth Factor B-Chain. Biochemistry, 1996, 35, 14413-14424.	1.2	392
178	Structural Determinants in the Platelet-derived Growth Factor α-Receptor Implicated in Modulation of Chemotaxis. Journal of Biological Chemistry, 1996, 271, 5101-5111.	1.6	45
179	Grb7 is a Downstream Signaling Component of Platelet-derived Growth Factor \hat{l}_{\pm} - and \hat{l}^2 -Receptors. Journal of Biological Chemistry, 1996, 271, 30942-30949.	1.6	67
180	Identification of the Major Phosphorylation Sites for Protein Kinase C in Kit/Stem Cell Factor Receptor in Vitro and in Intact Cells. Journal of Biological Chemistry, 1995, 270, 14192-14200.	1.6	83

#	Article	IF	CITATIONS
181	Compartmentalization of Autocrine Signal Transduction Pathways in Sis-transformed NIH 3T3 Cells. Journal of Biological Chemistry, 1995, 270, 10161-10170.	1.6	32
182	Dimerization of cell surface receptors in signal transduction. Cell, 1995, 80, 213-223.	13.5	1,571
183	Involvement of Loop 2 of Platelet-Derived Growth Faetor-AA and-BB in Receptor Binding. Growth Factors, 1995, 12, 159-164.	0.5	23
184	Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line. Journal of Cellular Physiology, 1994, 158, 381-389.	2.0	93
185	A Unique Autophosphorylation Site in the Platelet-Derived Growth Factor alpha Receptor from a Heterodimeric Receptor Complex. FEBS Journal, 1994, 225, 29-41.	0.2	47
186	Expression of Platelet-Derived Growth Factor (PDGF) and PDGF \hat{l} ±- and \hat{l} 2-Receptors in the Peripheral Nervous System: An Analysis of Sciatic Nerve and Dorsal Root Ganglia. Developmental Biology, 1993, 155, 459-470.	0.9	101
187	Platelet-Derived Growth Factor is Angiogenic <i>In Vivo</i> . Growth Factors, 1992, 7, 261-266.	0.5	258
188	Platelet-derived endothelial cell growth factor Pharmacokinetics, organ distribution and degradation after intravenous administration in rats. FEBS Letters, 1992, 313, 129-132.	1.3	13
189	Differential expression of platelet-derived growth factor \hat{l}_{\pm} - and \hat{l}_{\pm} -receptors on fat-storing cells and endothelial cells of rat liver. Experimental Cell Research, 1991, 193, 364-369.	1.2	52
190	Expression of Three Recombinant Homodimeric Isoforms of PDGF in Saccharomyces cerevisiae: Evidence for Difference in Receptor Binding and Functional Activities. Growth Factors, 1989, 1, 271-281.	0.5	121
191	Rat Brain Capillary Endothelial Cells Express Functional PDGF B-Type Receptors. Growth Factors, 1989, 2, 1-8.	0.5	142
192	A human glioma cell line secretes three structurally and functionally different dimeric forms of platelet-derived growth factor. FEBS Journal, 1988, 176, 179-186.	0.2	78
193	A glioma-derived PDGF a chain homodimer has different functional activities from a PDGF AB heterodimer purified from human platelets. Cell, 1988, 52, 791-799.	13.5	260
194	Possible positive autocrine feedback in the prereplicative phase of human fibroblasts. Nature, 1987, 328, 715-717.	13.7	224
195	cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature, 1986, 320, 695-699.	13.7	778
196	Antibodies against platelet-derived growth factor inhibit acute transformation by simian sarcoma virus. Nature, 1985, 317, 438-440.	13.7	190
197	Similar action of platelet-derived growth factor and epidermal growth factor in the prereplicative phase of human fibroblasts suggests a common intracellular pathway. Journal of Cellular Physiology, 1985, 124, 43-48.	2.0	77
198	Coexpression of the sis and myc proto-oncogenes in developing human placenta suggests autocrine control of trophoblast growth. Cell, 1985, 41, 301-312.	13.5	327

#	Article	IF	CITATIONS
199	Coexpression of a PDGF-like growth factor and PDGF receptors in a human osteosarcoma cell line: Implications for autocrine receptor activation. Cell, 1984, 39, 447-457.	13.5	233
200	Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature, 1983, 304, 35-39.	13.7	1,629
201	The effect of platelet-derived growth factor on morphology and motility of human glial cells. Journal of Muscle Research and Cell Motility, 1983, 4, 589-609.	0.9	142
202	Effect of epidermal growth factor on membrane motility and cell locomotion in cultures of human clonal glioma cells. Journal of Neuroscience Research, 1982, 8, 491-507.	1.3	120
203	Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor. Nature, 1982, 295, 419-420.	13.7	706
204	Chemical and biological properties of a growth factor from human-cultured osteosarcoma cells: Resemblance with platelet-derived growth factor. Journal of Cellular Physiology, 1980, 105, 235-246.	2.0	190