M Pilar Dorado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6945204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil⋆. Fuel, 2003, 82, 1311-1315.	6.4	564
2	The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy & amp; Fuels, 2009, 23, 2325-2341.	5.1	410
3	Stability, Lubricity, Viscosity, and Cold-Flow Properties of Alcoholâ^'Diesel Blends. Energy & Fuels, 2010, 24, 4497-4502.	5.1	327
4	A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Applied Energy, 2012, 95, 267-275.	10.1	295
5	Optimization of Alkali-Catalyzed Transesterification ofBrassicaCarinataOil for Biodiesel Production. Energy & Fuels, 2004, 18, 77-83.	5.1	261
6	Performance tests of a diesel engine fueled with pentanol/diesel fuel blends. Fuel, 2013, 107, 866-872.	6.4	181
7	The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel, 2013, 104, 170-182.	6.4	169
8	Physical and chemical properties of ethanol–diesel fuel blends. Fuel, 2011, 90, 795-802.	6.4	163
9	The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel, 2014, 123, 33-42.	6.4	150
10	Kinetic Parameters Affecting the Alkali-Catalyzed Transesterification Process of Used Olive Oil. Energy & Fuels, 2004, 18, 1457-1462.	5.1	141
11	Latest trends in feedstocks for biodiesel production. Biofuels, Bioproducts and Biorefining, 2014, 8, 126-143.	3.7	138
12	Testing Waste Olive Oil Methyl Ester as a Fuel in a Diesel Engine. Energy & Fuels, 2003, 17, 1560-1565.	5.1	116
13	Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. Journal of Biotechnology, 2009, 143, 51-59.	3.8	114
14	An approach to the economics of two vegetable oil-based biofuels in Spain. Renewable Energy, 2006, 31, 1231-1237.	8.9	107
15	AN ALKALI—CATALYZED TRANSESTERIFICATION PROCESS FOR HIGH FREE FATTY ACID WASTE OILS. Transactions of the American Society of Agricultural Engineers, 2002, 45, .	0.9	106
16	Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresource Technology, 2013, 130, 16-22.	9.6	95
17	Multiple response optimization of vegetable oils fatty acid composition to improve biodiesel physical properties. Bioresource Technology, 2011, 102, 7280-7288.	9.6	91
18	Valorization of food waste based on its composition through the concept of biorefinery. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 67-79.	5.9	91

M Pilar Dorado

#	Article	IF	CITATIONS
19	Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products. Bioresource Technology, 2015, 190, 57-65.	9.6	76
20	Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis. Energy Conversion and Management, 2014, 85, 227-233.	9.2	73
21	A Neural Network Approach to Simulate Biodiesel Production from Waste Olive Oil. Energy & Fuels, 2006, 20, 399-402.	5.1	62
22	Characterization of solar flat plate collectors. Renewable and Sustainable Energy Reviews, 2012, 16, 1709-1720.	16.4	58
23	Physical and Chemical Properties of Ethanolâ^'Biodiesel Blends for Diesel Engines. Energy & Fuels, 2010, 24, 2002-2009.	5.1	56
24	Optimization of solid food waste oil biodiesel by ultrasound-assisted transesterification. Fuel, 2019, 255, 115817.	6.4	55
25	Air and noise pollution of a diesel engine fueled with olive pomace oil methyl ester and petrodiesel blends. Fuel, 2012, 95, 615-621.	6.4	48
26	Influence of vegetable oils fatty-acid composition on biodiesel optimization. Bioresource Technology, 2011, 102, 1059-1065.	9.6	46
27	Influence of vegetable oils fatty acid composition on reaction temperature and glycerides conversion to biodiesel during transesterification. Bioresource Technology, 2011, 102, 1044-1050.	9.6	44
28	Food waste from restaurant sector – Characterization for biorefinery approach. Bioresource Technology, 2020, 301, 122779.	9.6	44
29	Biodiesel from saturated and monounsaturated fatty acid methyl esters and their influence over noise and air pollution. Fuel, 2012, 97, 751-756.	6.4	42
30	Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresource Technology, 2014, 159, 167-175.	9.6	42
31	Mango stone properties as biofuel and its potential for reducing CO2 emissions. Journal of Cleaner Production, 2018, 190, 53-62.	9.3	42
32	Valorization of food waste from restaurants by transesterification of the lipid fraction. Fuel, 2018, 215, 492-498.	6.4	42
33	Biodiesel production using microbial lipids derived from food waste discarded by catering services. Bioresource Technology, 2021, 323, 124597.	9.6	42
34	Visible and NIR Spectroscopy to assess biodiesel quality: Determination of alcohol and glycerol traces. Fuel, 2011, 90, 2321-2325.	6.4	40
35	Biodiesel production from microbial oil provided by oleaginous yeasts from olive oil mill wastewater growing on industrial glycerol. Industrial Crops and Products, 2019, 139, 111535.	5.2	39
36	Experimental investigation on injection characteristics of bioethanol–diesel fuel and bioethanol–biodiesel blends. Fuel, 2011, 90, 1968-1979.	6.4	38

M Pilar Dorado

#	Article	IF	CITATIONS
37	Influence of vegetable oil fatty acid composition on ultrasound-assisted synthesis of biodiesel. Fuel, 2014, 125, 183-191.	6.4	35
38	Near infrared reflectance spectroscopy and multivariate analysis to monitor reaction products during biodiesel production. Fuel, 2012, 92, 354-359.	6.4	33
39	THE EFFECT OF A WASTE VEGETABLE OIL BLEND WITH DIESEL FUEL ON ENGINE PERFORMANCE. Transactions of the American Society of Agricultural Engineers, 2002, 45, .	0.9	32
40	Response surface modeling to predict biodiesel yield in a multi-feedstock biodiesel production plant. Bioresource Technology, 2010, 101, 9587-9593.	9.6	32
41	Synthesis of biodiesel from castor oil: Silent versus sonicated methylation and energy studies. Energy Conversion and Management, 2015, 96, 561-567.	9.2	31
42	Influence of fatty acid unsaturation degree over exhaust and noise emissions through biodiesel combustion. Fuel, 2013, 109, 248-255.	6.4	25
43	Biodiesel synthesis from saturated and unsaturated oils assisted by the combination of ultrasound, agitation and heating. Fuel, 2014, 131, 6-16.	6.4	25
44	Economic viability of the use of olive tree pruning as fuel for heating systems in public institutions in South Spain. Fuel, 2010, 89, 1386-1391.	6.4	24
45	Ultrasound-assisted biodiesel production from Camelina sativa oil. Bioresource Technology, 2015, 185, 116-124.	9.6	24
46	Virtual laboratory on biomass for energy generation. Journal of Cleaner Production, 2016, 112, 3842-3851.	9.3	24
47	Influence of ethanol/diesel fuel and propanol/diesel fuel blends over exhaust and noise emissions. Energy Procedia, 2017, 142, 849-854.	1.8	24
48	Flow injection analysis-based methodology for automatic on-line monitoring and quality control for biodiesel production. Bioresource Technology, 2009, 100, 421-427.	9.6	23
49	Life Cycle Assessment and External Environmental Cost Analysis of Heat Pumps. Environmental Engineering Science, 2004, 21, 591-605.	1.6	21
50	Evaluation of Sinapis alba as feedstock for biodiesel production in Mediterranean climate. Fuel, 2016, 184, 656-664.	6.4	21
51	Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology. Energies, 2018, 11, 302.	3.1	20
52	Castor oil enhanced effect on fuel ethanol-diesel fuel blend properties. Applied Energy, 2018, 224, 409-416.	10.1	18
53	Multiple response optimization to reduce exhaust emissions and fuel consumption of a diesel engine fueled with olive pomace oil methyl ester/diesel fuel blends. Energy, 2016, 117, 398-404.	8.8	16
54	Combustion Faults Diagnosis in Internal Combustion Engines Using Angular Speed Measurements and Artificial Neural Networks. Energy & Fuels, 2008, 22, 2972-2980.	5.1	14

M PILAR DORADO

#	Article	IF	CITATIONS
55	Evaluation of sound quality in a tractor driver cabin based on the effect of biodiesel fatty acid composition. Fuel, 2014, 118, 194-201.	6.4	14
56	Feedstocks for advanced biodiesel production. , 2012, , 69-90.		12
57	Ternary blends of diesel fuel oxygenated with ethanol and castor oil for diesel engines. Energy Procedia, 2017, 142, 855-860.	1.8	12
58	Influence of nitrogen fertilization on physical and chemical properties of fatty acid methyl esters from Brassica napus oil. Fuel, 2013, 111, 865-871.	6.4	11
59	Noise prediction of a diesel engine fueled with olive pomace oil methyl ester blended with diesel fuel. Fuel, 2012, 98, 280-287.	6.4	10
60	Cetane index prediction based on biodiesel distillation curve. Fuel, 2022, 321, 124063.	6.4	8
61	Computational models to predict noise emissions of a diesel engine fueled with saturated and monounsaturated fatty acid methyl esters. Energy, 2018, 144, 110-119.	8.8	7
62	Development of a Computer Model to Simulate the Injection Process of a Diesel Engine. Energy & Fuels, 2005, 19, 1526-1535.	5.1	6
63	Bibliometric Studies on Emissions from Diesel Engines Running on Alcohol/Diesel Fuel Blends. A Case Study about Noise Emissions. Processes, 2021, 9, 623.	2.8	6
64	Compatibility studies between an indirect injection diesel injector and biodiesel with different composition: Stationary tests. Fuel, 2022, 307, 121788.	6.4	6
65	Computer Model to Simulate the Injection Process in a Rotary Injection Pump:Â The Inverse Problem. Energy & Fuels, 2007, 21, 110-120.	5.1	5
66	Vegetable-based feedstocks for biofuels production. , 2011, , 61-94.		5
67	Influence of 1-butanol and 1-pentanol addition to diesel fuel on exhaust and noise emissions under stationary and transient conditions. Fuel, 2021, 301, 121046.	6.4	5
68	Optimization of ultrasound-assisted liquefaction of solid digestate to produce bio-oil: Energy study and characterization. Fuel, 2022, 313, 123020.	6.4	5
69	Influence of a Combustion Parametric Model on the Cyclic Angular Speed of Internal Combustion Engines. Part I: Setup for Sensitivity Analysis. Energy & amp; Fuels, 2009, 23, 2921-2929.	5.1	4
70	Biofuels for Transport: Prospects and Challenges. , 2010, , 171-210.		4
71	Recycling of kebab restoration grease for bioenergy production through acoustic cavitation. Renewable Energy, 2020, 155, 1147-1155.	8.9	4
72	Biorefinery concept for the industrial valorization of tomato processing by-products. , 2022, , 371-420.		3

Biorefinery concept for the industrial valorization of tomato processing by-products. , 2022, , 371-420. 72

#	Article	IF	CITATIONS
73	Descriptive and inferential statistics as an exhaust emission comparative tool between different engine operating conditions and fuels. Application to highly oxidized biodiesel blended with primary alcohols. Fuel, 2022, 324, 124453.	6.4	3
74	Influence of a Combustion Parametric Model on the Cyclic Angular Speed of Internal Combustion Engines. Part II: Statistical Sensitivity Assessment Results. Energy & Fuels, 2010, 24, 954-964.	5.1	2
75	Comparative study of various renewable fuels blends to run a diesel power plant. Renewable Energy and Power Quality Journal, 0, 1, 53-57.	0.2	2
76	Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil. Energies, 2020, 13, 2994.	3.1	1
77	Biorefinery Virtual Lab-Integrating E-learning Techniques and Theoretical Learning. Advances in Intelligent Systems and Computing, 2013, , 321-330.	0.6	1
78	New Frontiers in the Production of Biodiesel: Biodiesel Derived from Macro and Microorganisms. Lecture Notes in Energy, 2014, , 205-225.	0.3	0
79	Auxiliary energy-assisted biodiesel production data from solid food waste oil. Data in Brief, 2020, 30, 105456.	1.0	0